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Abstract In the present paper, the behavior of a single polymer chain under various solvent conditions was modeled by self-
avoiding walks (SAW) with nearest neighbors attraction A¢ on a simple cubic lattice. Determination of the &condition was
based on the numerical results of the mean square radius of gyration and end-to-end distance. It was found that at the 8
temperature Ag/kT equals —0.27. The exponents o in the Mark-Houwink equation with different interaction parameters are
consistent with the results of experiments: under &-condition, = 0.5, and for a good solvent = 0.74~0.84, respectively.
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INTRODUCTION

The behavior of a polymer chain under various solvent conditions has been modeled by self-avoiding walks
(SAWs) with nearest neighbors (NN) attraction & (¢ < 0) or by self-attracting trails on a lattice. At high
temperature (7) the chain is swollen, i.e., its mean square end-to-end distance <#*> scales with the chain length N
as N*', where v ~ 0.59 in three-dimensions!". This corresponds to the good solvent regime. As T is decreased
(i.e., solvent conditions worsen) the attractions become more effective and at a certain temperature 4 (the Flory
temperature) they cancel the excluded volume repulsion. So, the chain behaves in many respects like a random
walk, i.e, it is characterized by v=0.5. At T < @the attractions prevail and the chain collapses, i.e., v=1/3. This
picture is supported by experiments.

In this paper we use Monte Carlo calculations of configurations to generate self-avoiding chains with nearest
neighbors (NN) attraction. The values of mean square end-to-end distance <#*> and mean square radius of
gyration <R*>> were computed for a wide range of attractive energies between the non-bonded segments of the
chains separated by the lattice spacing. The next.section gives the description of calculation method. The
remaining sections give the results and their discussion.

METHOD OF SIMULATION

In a dilute polymer solution the interchain interactions are ignored. This means that a polymer solution is
modeled as a single self-avoiding walk with interaction between segments and solvents. In our model, for each
segment we only consider its nearest-neighbor interactions. The value of A¢ is defined as the energy difference
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for a contact between two separated segments at the nearest neighbor sites on a lattice.
1
A5=512‘5(511+522) ey

where &5, &; and &, are the energies of interaction associated with solvent-solvent, solvent-segment, segment-
segment contacts, respectively. A negative or positive value of A¢ indicates that the polymer chain is in poor or
good solvent situation. The total energy of a polymer chain is the sum of all nearest-neighbor energies in its
conformation. The energy of the i-th conformation E; is written as

E, =n; xA¢g 2)

where 7, is the contact number between the separated segments on the lattice in a chain.
The partition function of a polymer chain is

z

o)
Zexp(—E, 1kT) 3

i=1

where Q is the number of conformations, £ is the Boltzmann constant, and 7 is the absolute temperature. The
Boltzmann probability of the i-th conformation is

p; =exp(—E,/kT)/ Z G

Therefore the mean square end-to-end distance and the mean square radius of gyration are written as:

o
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respectively, where w, is Rosenbluth-Rosenbluth factor'”, In our simulations, the first step of the walk is placed at
the origin of coordinates, before each further step of the walk, each possible direction for the step is examined for
avoiding the intersection with previous steps. A list of all directions, which do not cause intersections, is made
(called allowed vectors). A random choice of the allowed vectors is made and a step is taken in the chosen
direction. After a walk of the desired length is generated, parameters of physical interest for the walk, such as
number of nearest-neighbor contacts, mean square end-to-end distance, and mean square radius of gyration, are
recorded. To eliminate the difference between computer probability and thermodynamic probability we must
separately weight each walk with the Rosenbluth-Rosenbluth method when calculating the averages of
parameters over many walks.

NUMERICAL RESULTS AND DISCUSSION

Chain Size and Solvent Quality

Figure 1 shows the dependence of mean square end-to-end distance per unit length on chain length at different
Ag/kT. It can be seen that with increasing Ag/kT the chain is swollen. At Ag/kT = -0.27 the value of <h*>/N is
invariable with increasing chain length, indicating the approach of the @state. This value of A£/kT at the &
condition is very close to that obtained by Meirovitch and Lim®!, who gave AglkTy=-0.274 £ 0.006. In G-state
the nearest attraction counteracts the excluded volume repulsion and the chain behaves in many respects like a
random walk. With decreasing A¢/kT the attractions prevail and the chain collapses, i.e., at Ag/kT = -0.4, -0.5,
the value of <#*>/N decreases with increasing chain length (V) and when N > 450 the curves become flat which
indicates full collapse. In terms of Ag/kT the solvent can be divided into the following three kinds. When Ag/kT >
0 the solvent is called a good solvent (Fig. 1a). When 0 > Ag/kT > —0.27and Ag/kT < -0.27 the solvent is called a
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semi-good solvent and a poor solvent, respectively (Fig.1a and b). In a good solvent, since <k*> increases with
increasing chain length, <#*>/N was computed with bigger statistical deviations.
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Fig. 1 Mean square end-to-end distance per unit length <#*>/N plotted versus chain length N for SAW chain with
different nearest-neighbor interaction energy Ag/kT in (a) poor solvent and semi-good solvent and (b) good solvent
a) B AgkT=-0.5, @ AgkT=-0.4, A AgkT=-0.3, ¥ AgkT'=-0.27, ® AckT=-0.2, + Ag/kT=-0.1,

X AgkT=0;b) B AckT=0.2, ® Ag/kT=0.4, A Ag/kT=0.6

In order to establish a reliable &condition, we followed Rubio and co-workers’ method™ *. This analysis is
a simplified version of the method used by Meirovitch and Lim!® !, The method is based on the expectation that
short chains will expand at T > T, with an exponent v > v, which increases and approaches v, for very large N.
An opposite trend is expected at T > Ty, where short chains grow with v> v, (1, is the value of v at critical point)
decreasing to v, (for large N). Thus at 7= T v is expected to become flat, i.e., independent of N, with the value
vs Therefore the &point is the point where the data obey the best correlation R*~N?", where v is constant and
equal to 0.5. The curves of <§*>/N in Fig. 2 show the same results as that in Fig. 1.
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Fig. 2 Mean square radius of gyration per unit length <S*>/N plotted versus chain length N for SAW chain with
different nearest-neighbor interaction energy Ag/kT in (a) poor solvent and semi-good solvent and (b) good solvent
a) B AgkT=-0.5, @ AgkT=-0.4, A AgkT=-0.3, ¥ AcdkT=-0.27, ® AgkT=-0.2, + AgkT=-0.1,

X AgkT=0;b) B AgkT=02, @ Ag/kT=0.4, A Ag/kT=0.6
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Precipitation Phenomenon for Single Chain
On increasing the attractive energy between segments, one might expect the chain to finally collapse upon itself.
This phenomenon might be viewed as a single-chain precipitation. We have studied this phenomenon with
special interest to ask: (1) if the precipitation occurs over a narrow temperature range as a phase phenomenon?
(2) if there is a sharp precipitation, and how it relates to the &7

Figure 3 shows a plot of S%N for various chain lengths vs. Ag/kT. As one goes from small N to larger N there
is an increasing steepness in the plot of <§*>/N versus Ag/kT. For N = 571 the steepness of the descent is
impressive suggesting that for the long enough chains there is truly a discontinuity of the change rate in radius of
gyration corresponding to a precipitation point of the chain, which is in agreement with other investigators®® * 0]
The shape of the curves is in agreement with those obtained from numerical studies'® *! and experiments!'"!,

Inspection of Figs. 3 and 4 suggests that the precipitation point is very close to the fregion. Clearly we need
more data as a function of energy around Ag/kT. Suffice it to say here that the data are suggestive but not
conclusive proof of single-chain precipitation.
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Fig. 3 Mean square radius of gyration per unit length Fig. 4 Mean square end-to-end distance per unit
<§%>/N plotied versus nearest-neighbor interaction length <h*>/N plotted versus nearest-neighbor
energy Ag/kT for SAW chain with different chain interaction energy A&kl for SAW chain with
length ¥ different chain length N

Scaling Analysis of Chain Size
For chains with excluded volume and with attractive energy between unbonded segments, previous workers
have found that their <#*> and <R*> data for large chain lengths obeyed

<R% o« <h*> o N*¥ Q)

[12]

where v depends on Ag/kT and at Ag/kT = 0, we have v, = 0. 59.

In order to check our results, we plotted In<#*> versus InN for various Ag/kT in Fig. 5.

It can be seen that at Ag/kT = 0, 0.2 and -0.27, the plot of In<h*> versus InVN gives straight lines. For N >
300, at Ag/kT = 0.2, 0.6 and 1, the graph is no longer straight; this should be due to the statistical error. In Table
1 results for v are presented at different A¢/kT, where the value of v = 0.5 predicted by theory is found to occur
at Ag/kT = -0.27. At Ag/kT = 0, the value of vis 0.6, which is in agreement with the theoretical value. For larger
attraction (A&/kT = -0.4 and -0.5), <R*>> and <h”>> could not be fitted by Eq. (3), i.e., the curves in Fig. 5 did not
have a linear range in the range of computed values. Therefore we conclude that the scaling law does not fit <R*>
and <h*> for larger attractive energy.
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Fig. 5 Log-log plot of mean square end-to-end distance <4#*> as a function of chain
length N for SAW with different nearest neighbor interaction energy Ag/kT
W AgkT=-0.5, @ AgkT=-0.4, A AgkT=-0.27, ¥ AelkT=-0.2, ® AglkT =0,

A AgkT=02,0AelkT=0.6, O AgkT =1

Table 1. The exponent v of the scaling law <h%> o <s?> oc N*¥ as
a function of nearest-neighbor interaction energy Ag/kT

A&kT v AglkT v

-0.27 0.50 0 0.60
-0.25 0.53 0.2 0.58
-0.2 0.57 0.4 0.58

-0.1 0.59 0.6 0.62

Determination of Exponent (a) in the Mark-Houwink Equation
In general, the relationship between intrinsic viscosity [77] and average molecular weight M for polymers can be
obtained in several ways. One of them is from the Mark-Houwink equation:

[77] = AM* ®
where A4 is a constant. The others are from the simplified Flory-intrinsic viscosity equation:
[7]= @ (WY /M ®

where @ is a constant and M is the molecular weight. Here, it is noted that M is directly proportional to the chain

length (¥). Thus,
a=3v-1 10

can be obtained from Eqs. (7), (8) and (9). In Table 2 the Mark-Houwink exponent has been calculated with Eq.
(8) for a range of interaction parameter from 0.3 to 0.6. At Ag/kT = -0.27 the value of a is 0.5, and at Ag/kT =
—0.25 - 0.6 the value of « is in the range from 0.7 to 0.8, which is in agreement with the results obtained from
experiments"®. For the chains of large attractive energy (in poor solvent), accurate values of o can not be
obtained. Figure 6 gives the plot of & versus Ag/kT. It can be seen that there is an increasing steepness in Fig. 6
with the variance of Ag/kT from —0.3 to 0. With can increasing AgkT (from 0 to 0.6), the values of & fluctuate
near 0.8 which is the value of « at the infinite temperature condition. Thus, we conclude that it is correct to
describe the chain size in good solution with the values of chain size at infinite temperature.
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Table 2. Exponent « in Mark-Houwink equation as a function of nearest
neighbor interaction energy Ag/kT

AglkT -0.27 -0.25 -0.20 -0.1 0 0.2 0.4 0.6
o 050 059 071 077 080 074 074 084
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Fig. 6 Exponent « in Mark-Houwink equation plotted versus
nearest-neighbor interaction energy Ag/kT

SUMMARY

We have studied the properties of polymer chains in solution at the limit of infinite dilution by SAW with
nearest-neighbor attractions on a simple cubic lattice. The &point is Ag/kT = -0.27 for such a modeling chain.
The results for the mean square radius of gyration, <R*>, and the mean square end-to-end distance, <H*>, are
consistent with the scaling equation, in which the exponent value v= 0.5 at the &-point. The values for the Mark-
Houwink exponent & obtained from the computed exponents v are in accordance with the results obtained from
experiments. Therefor the results obtained by this nearest-neighbor attraction mode] are in agreement with the
properties of real polymers in solution.

REFERENCES

de Gennes, P.G., “Scaling Concepts in Polymer Physics”, Ithaca, New York, Cornell University, 1985, p.45
Rosenbluth, M.N. and Rosenbluth, A.W., J. Chem. Phys., 1955, 23: 356

Rubio, AM., Freire, I.J., Bishop, M. and Clarke, J.H.R., Macromolecules, 1995, 28: 2240
Meirovitch, H. and Lim, H.A., J. Chem. Phys., 1990, 92: 5144

Torres, A.M., Rubio, A., Freire, J.J., Bishop, M. and Clarke, J.H.R., J. Chem. Phys., 1994, 100: 7754
Sorensen, C.C. and Kovac, J., Macromolecules, 1991, 24: 3883

Meirovitch, H. and Lim, H.A., J. Chem. Phys., 1989, 91: 2544

Kremer, K., Baumgirtner, A. and Binder, K., I. Phys., A, 1981, 15: 2879

Wu, D.C. and Fan, K., Acta Polymerica Sinica (in Chinese), 2001, (1): 21

Milchev, A., Paul, M. and Binder, K., J. Chem. Phys., 1993, 99: 4786

Wy, C., Li, M. and Wang, X.H., Chinese J. Polym. Sci., 1999, 17(4): 367

Warvari, H.E., Knaell, K.K. and Scott, R.A,, ITI, J. Chem. Phys., 1972, 56: 2903

van Krevelen, D.W., “Properties of Polymers”, Elsevier, New York, 1990, p.256

D0 N B W N e

— e e
W R = O





