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MONTE CARLO YONTEMININ SAYISAL INTEGRALLERE VE
ELEKTROMANYETIK DENKLEM INTEGRALLERINE UYGULANMASI

OZET

Yasalar1 deterministik anlamda bilinen olaylarla ilgilkarsilastigimiz problemlerin
cogunda, olaylardaki degiskenlerin degerleri bilindiginde, probleme kesin ve tek bir
¢6zim bulunabilir. Bunakarsilik, bitin anlamli haberlesme isaretleri, alict uctan
izlendigi gibi tahmin edilemez veyaaslantisaldir ya da sadece oldukc¢karmasik
denklemlerle ifade edilebilmekte ve ¢c6zUmu icin de ¢ok uzuypgen islemler yapilmak
zorundakalinmaktadir. MUhendislikte de blkarmasik denklemlerin ¢oztlebilmesi icin

caligmalar yapilmaktadir.

Bu tezinyapilmasindaki amag, elektromanyetik problemlerde boyaititikca ¢ozilmesi
gliclesen ve oldukgahizli degisen karmasik integrallere ve integralegerinin bulunmasi
gereken ama tam olarak deterministik bir ifadesinamadigindan, sadecelasiliksal
olarak ifade edilebileifonksiyonlarin ¢ozimunde Monte Carlo integral alma yonteminin

uygulanabilir olupolmadiginin arastirilmak istenmesidir.

Monte Carlo yontemi, kimyadaarmodinamige ve atomfizigine kadar pek ¢ok alanda
basari1 ile uygulanan ve oldukca iyi sonuclar elde edilenybklasim ve tekniktir. Bu

yontem ile ilgili, ¢esitli alanlarda pek ¢ok literatdtusmustur.

Oncelikle, yontemimizi uygulayabilmemiz ve daha iyi anlayabilmemizdtisiliksal
kavramlar Gzerinddurulmas: gerekmektedir. Bu nedenle, Bolim 2'de, ortalama, varyans
ve Monte Carlo yonteminin temelinlusturan merkezi limit teoremindehahsedilmis ve

yontemin temelininlayandigi mantik agiklanmustir.

Bolum 3'te ise, Monte Carlo integral alma yontemiriaslarindan bahsedilmis ve
blyuk elemanlatoplulugunun 6zelliklerinin, rasgele elemanlar secilekgdksturulmus bir

alt kiimesi araciligi ile g¢ikarilabilecegi agiklanmistir. Monte Carlo'nun dort temel
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yaklasim modeli Uzerinde durularak, modellerskinda bilgiler verilmistir. Bahsedilen
bu modellerreddetme (rejection - hit & miss), ortalama (averaging), kontk@iskeni

(control variates)ve 6nem 6rneklemesi (importance sampligghtemleridir.

Yonteminuygulanisin1 anlatabilmek icin, Monte Carlo integral alma yontemleri, Bolum
4'te, yontem oncelikle sonucu bilinen belirli integralleygulanmis ve belirli bir integral

alma yontemi ile c6zime gidilerek, analitik yéntemle rasgele bir yontem olan Monte
Carlo yontemikarsilastirilmistir. Boylelikle, yonteminuygulanabilirligi ve verimliligi
hakkinda genel bir fikir elde edilerek, sonuca ne kagaitlasildig1 goriilmiis ve analitik
integral alma yontemlerinin hata buyuklikleri ve yontemimizde meydana gelen hata
blyuklukleriirdelenmistir. Coziime gidilirken dikkat edilmesi gereken noktalar ve en iyi
¢6zimun nesekilde elde edilecegi tartisilmis ve Oncedeniretilmis 6rnek grubunun
degisik buyukliklerde 6rnek grubuna boélinerek incelenmesi ve bunun etkilerinden

bahsedilmistir.

Buradan elde edilen sonuclardan, Monte Carlo integral alma yonteminin ancak integral
boyutunun 4. dereceden buyuk olan integaller dgimtajli sonuglarverebilecegi ve daha
disiik boyutlu integraller icin,sayisal tekniklere gore hassasiyetinidiisiik oldugu
anlasilmistir. Buradan da, Monte Carlo yonteminin, belirli Bikilde formul ile ifade

edilebilen ve boyugayis1 az olan integraller i¢in verimtilmadigi sonucunavarilmistir.

Maalesef ki, ilgilenilen elektromanyetik problemlerdeki integrallere bu yo&ntemin
uygulanmasi1 pekavantajli olamayacagi ¢cok agiktir. Bu nedenle integral ¢cozumleri yerine,
Monte Carlo yonteminin veyaklasimmin elektromanyetik problemlere necekilde
uygulandigr arastirilarak, yonteminolasiliksal ve dogadaki olaylarin incelenmesinde ne
kadar verimlioldugundan Bolim 5'tebahsedilmistir. Monte Carloyaklasimi ile tekrar
edilerek ortalamasi alinan problemlerirsonuglarinin, gergekdegerlerle oldukga ortiisiir

bir sekilde ¢iktig1 goriilmiistiir.

Bu yontem Ozellikle, elektromanyetikte, ortam parametrelerinin rasdeieiminin
canlandirilmasi, sa¢ilmanin meydanagelecegi rasgele yizeylerin Uretilmesi, rasgele
smirlarin  belirlenmesi ve bir sistemin geneperformansinin  belirlenmesindeki

hesaplamalardgogun olarakkullanilanmaktadir.

Monte Carloteknigi olasiliksal temelli bir yontemoldugundan dolayi, ¢ok fazla hesaba

ve rasgelertamlar1 modelleyebilecek rasgebayiya ihtiya¢ duymaktadir. Bunun icin de
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gucll bilgisayarlara ve ideal rasgatey: treteclerine ihtiyagluymaktadir. GUnimuzde,
bilgisayarlarin hizlanmasi ile olasiliksal temelli rasgeléslemlerin ¢6ziminde verimli bir

yontem haline gelmektedir.

Monte Carloteknigi, basitraslantisal islemlere ve ¢ok boyutlu integrallere uygulanan,
beklenendegerlerin tahmin edilmesinde etkili ve gerekli bir tekniktir. Bu teknik, ¢ok-
boyutlu integraller igin, analitik formullerden daha verimli bir teknikthyrica, 6zel
problemlere olasiliksal olarak rahatlikla adapte edilebilir ve belirli integrasyon
formullerinin olmadigi, standart analitik tekniklerle c¢c6zilmesi verimsiz olacak, c¢ok

karmaik problemlererahatlikla uygulanabilirdir.
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IMPLEMENTATION OF MONTE CARLO TECHNIQEU TO NUMERICAL
INTEGRATIONS AND ELECTROMAGNETIK INTEGRAL EQUATIONS

SUMMARY

An absolute and a unique solution may be found for the problems that we face, related to
the events, whose rules are known by deterministic means, if and only if the values of the
variables in the event are known. All meaningful communication signals, as observed in
the receiver side, can not be guessed or can be stochastic or only be expressed by highl
complex equations and very long and detailed processes must be done for the solution. In

order to solve such complex equations, studies are being done in engineering.

The aim of this thesis is to examine whether the Monte Carlo integration method can be
applicable or not in electromagnetic problems where the solution for a complex integral
becomes difficult as it changes very fast and its dimension increases and where the
solution for an integral is required that can only be expressed by a probabilistic function

without any deterministic expression.

Monte Carlo method is an approximation and a technique which is applied, with great
success, to various fields from chemistry to thermodynamics and atom physics and yields

good results.

In order to apply our method and understand it better, we have to emphasize on some
probabilistic terms. For this reason, mean, variance and the limit theorem which makes
the fundamentals of Monte Carlo method, are introduced and the principles (logic) that

the method is supported by are explained.

In the third section, the basics of the Monte Carlo integration method is introduced and
how the characteristics for an unlimited element set can be observed by a subset of
randomly chosen elements. The four main application models of Monte Carlo which are
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rejection - hit & miss, averaging, control varieties and importance sampling method are

introduced and explained.

In order to explain the application of the method, Monte Carlo integration methods are
first applied to definite integrals whose results are known and then the calculation from
the analytic method is compared with the random Monte Carlo method, in Section Four.
So the knowledge of applicability and the efficiency of the method is gained, how close
to the real results are observed and the errors between them are compared. The key point:
for the best result and how to get it, are discussed and the effects of dividing the

predefined sample group into various smaller sample groups, are studied.

From the previous result it is understood that the Monte Carlo integration method is not
applicable to the integrals with four or smaller order dimensions but higher orders and
that they have a lower sensitivity compared with the numerical techniques. As a result,
the method is not efficient for smaller order integrals, is expressed.

Unfortunately, it is obvious that the method has no advantage for the concerned

electromagnetic problems. For this reason, instead of integral solutions, the adaptation of
the Monte Carlo method and approximation to the electromagnetic problems are studied,
and its efficiency in research of probabilistic and natural events are mentioned.

Especially in electromagnetics, this method is widely used for simulation of random
variations, production of random rough surfaces where scattering occurs, determination

of random boundaries and calculations to determine a general performance of a system

Since the Monte Carlo technique is based on a probabilistic method, it requires too many
calculations and random numbers to model random mediums. For this reason it requires
powerful computers and ideal random number generators. The speed improvement in
computer science allows it to be an efficient way for the solutions of probabilistic based

random process.

Finally, Monte Carlo is a necessary and an effective technique to guess the mean values
of simple random process and high-order integrals. This technique is more efficient for
higher-order integrals than analytic formulas. In addition, Monte Carlo technique can be

easily adaptable to special problems because of its probabilistic behavior. Although,
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analytic technique are not useful for the solutions of complex problems without a

formulary expression, Monte Carlo technique can be used efficiently.
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1. GIRIS

Yasalar1 deterministik anlamda bilinen olaylarla ilgili karsilastigimiz problemlerin
cogunda, olaylardaki degiskenlerin degerleri bilindiginde, probleme kesin ve tek bir
¢Oziim bulunabilir. Buna karsilik, biitiin anlamli haberlesme isaretleri, alici ugtan
izlendigi gibi tahmin edilemez veya raslantisaldir. Ya da sadece oldukg¢a karmagik
denklemlerle ifade edilebilmekte ve ¢oziimii i¢in de ¢ok uzun ve yogun islemler
yapilmak zorunda kalinmaktadir. Miihendislikte de bu karmasik denklemlerin

¢Oziilebilmesi i¢in ¢alismalar yapilmaktadir.

Son 20 yilda bilgisayar hiz ve belleklerindeki gelismelere ve herkesin g¢alisma
masasinda kolayca erigebilecegi PC(personel computer - kisisel bilgisayar)’lerin
yayginlasmasina kosut olarak fiziksel problemlerin sayisal tekniklerle ¢oziimii
belirgin bir oncelik kazanmistir. Giiniimiizde sayisal teknikler sadece karmasik
deterministik problemlere degil, istatistiksel hatta stokastik (zamanla degisen
istatistiksel dzellikproblemlere de uygulanir olmustur. Bu uygulamalar, en basit bir

integral almadan ¢ok karmasik sistem benzetimlerine kadar uzanabilmektedir.

Son yillarda bir ¢ok karmasik problemin ¢oziimiinde Monte Carlo tekniginin adi
gecmektedir. Istatistiksel fizik, istatiksel mekanik, termodinamik, niikleer fizik, uzay
bilimleri ve elektromanyetik gibi ¢cok degisik disiplinlerde Monte Carlo anlaminda
benzetim(simiilasyon) tekniklerinden s6z edilmektedir. Bu ¢alismada Monte Carlo
anlaminda benzetim ele alimmis ve Ozellikle elektromanyetik problemlere

uygulanmasi lizerinde durulmustur.

Monte Carlo teknigi nedir? Hangi tip elektromanyetik problemler bu teknikle ele
alimmaktadir? Teknigin sagladig istiinliikler nelerdir? FEle alman problemler
deterministik yontemlerle ¢oziilemediklerinden mi  Monte Carlo teknigine
basvurulmaktadir? Yoksa deterministik tekniklerle de ¢oziilebilir olmasina karsin

Monte Carlo teknigi biiylik istiinliik sagladigi i¢in mi tercih edilmektedir? Bu ve



benzeri sorularin yanitlarinin verilebilmesi herkesin dilinde olan ancak net ifade

edilemeyen Monte Carlo benzetiminin agik¢a anlagilmasi i¢in zorunludur.

Monte Carlo teknigi sayisal bir tekniktir. Yiiksek hizda ve bellekte bilgisayarlar
gerektirir. Ancak deterministik bir ifadenin sayisal ¢oziimii ile karistirilmamalidir,
ciinkii Monte Carlo deterministik bir teknik DEGILDIR. Ornegin, [+11] araliginda bir
trigonometrik fonksiyonun yamuk kuralina gore sayisal integralin hesaplanmasi bir
sayisal hesaplamadir, ancak deterministik bir hesaplamadir. Monte Carlo
deterministik bir teknik olmamasina karsin deterministik ve stokastik problemlere

uygulanabilir.

Monte Carlo yontemi, olasiliksal temellere dayali, matematiksel veya fiziksel
problemleri ¢6zmeyi hedefleyen bir yontemdir. Problemlerin ¢éziimiinde olasiliksal
bir benzerlik kurulmaya calisilir. Deneysel ornekleme teknikleri kullanilir.
Matematiksel bir model kurulmaya g¢alisildigindan yontem, raslantisal siireclerle
tanimlanan fiziksel deneylere daha yakin bir yontemdir. Monte Carlo ydntemi,
karmasik ve c¢ok elemanli sistemlerin ele alinmasinda giiclii bir yoOntemdir.
Matematik formiillerden ziyade, karmasik modellerin canlandirilmasi yoluyla

modelleme yapan bir tekniktir.

"Monte Carlo" terimi, ismini Monaca’nun kumarhaneleri ile tnli Monte Carlo
sehrindeki rulet oyunlarindan almaktadir. Rulet oyunu, degisik renkler ve sayilar
bulunan bir disktir. Disk bir yonde hizla dondiiriiliirken, kiigiik bir metal top aksi
yonde disk iizerinde dondiiriiliir. Bir siire sonra top bir renk ve sayida durur.
Matematiksel olarak rulet diski, mekanik bir rasgele say1 iiretecinden bagka bir sey
degildir. Monte Carlo teknigi de temelde rasgele say iiretimine dayandigindan bu

isim verilmistir.

Ne tip problemler Monte Carlo teknigi ile ele alinabilir? Ilgi alanimiza girdiginden,

Monte Carlo teknigi ile ele alinan problemler elektromanyetik agirlikli secilmistir.
Ornegin:

» Dalga propagasyonu problemleri:



Bu problemlerde ¢ogunlukla uzayin ve zamanin fonksiyonu olarak 4 ya da
daha fazla boyutlu karmasik integrallerle ugrasilir. integral igerisinde genelde
genlik ve faz olarak hizli degisimler igeren elektrik ya da manyetik alan
degiskenleri s6z konusudur. Cogunlukla yaklagikliklar yapilarak bu
integraller ¢oziilebilir duruma getirilmeye calisilir. Ornegin belli bir bolgede
ya da belli bir frekans araliginda ya da belli ortamlardaki c¢oziimlerle
yetinmek zorunda kalarak, integraller analitik ya da sayisal olarak ¢oziilebilir.
Ancak genele ait ¢oziimler, cogunlukla ¢ok-katli integraller olarak kargimiza
¢ikar. Bu durumlarda, sayisal integrasyon teknikleri ile ¢oziime ulasmak da
hemen hemen olanaksizdir. Ozellikle integrallerde boyut sayisi arttikca
sayisal ornekleme yoluyla integral almak olanaksizlagir. Analitik ¢oziimlerin
bulunamadigr (Glgulebilir, g6zlemlenebilir buydklikler cinsindenye
deterministik sayisal tekniklerin yetersiz kaldigi bu durumlarda Monte Carlo
teknigine bagvurulur. Gilizel olan, Monte Carlo tekniginin integrasyon

boyutuna bagli olarak, etkinliginin de artmasidir.

Monte Carlo tekniginin basari ile uygulanabilecegi dalga propagasyonu
problemlerinin en 6nemlisi atmosferde dalga iletimidir. Atmosferin yere
yakin tabakasi (troposfer), yukari tabakalari (iyonosfer) tamamen raslantisal
elektromanyetik karakter gosterirler. Bu ortamlarda propogasyonun
istatistiksel davranisindan s6z edilebilir. Haberlesme miihendisliginde
propogasyon kayiplari, girisim gibi etkilerin minimum ve maksimum

degerleri elde edilmeye calisilir.

Troposferik dalgalar; hava savunmasi, karasal ortamlar, yiizey arastirmalari,
aerodinamic ve aerostatic kuvvetlere dayanan uygulamalarda ve farkli radar

ve haberlesme sistemlerinde yaygin olarak kullanilmaktadir. [1,2]

Bu tip dalgalarin yayilimlar1 karmasik olduklarindan, bu problemlerin analitik
modellenmesi olduk¢a zordur. Bu nedenle bu konu iizerinde yapilan
calismalar genellikle yaklasik c¢oziimler iizerinedir. Yaklasik olmalarina
ragmen, bu ¢ozlimlerden elde edilen fiziksel anlayis, kompleks c¢evrelerde
dalga yayinim olayinin anlasilmasina ve tamamiyle sayisal tekniklerle elde

edilen sonuglarin yorumlanmasina yardimci olmustur. Bu c¢alismanin amaci



da, troposferik radyo dalga yaymiminin olasiliksal dogasini anlamaya

yoneliktir.

Diger yontemlerin yam sira, Split Step Parabolik denklem (SSPE)
Geometrik Optik (GQ)bir ¢ok yayilim modelini de igermek {iizere, diinya
yizeyindeki  farkli  kirmmim  profilleri i¢in, dalga yaymimlarinin

cizdirilmesinde kullanilan en yaygin yontemlerdendir.

Troposferik radyo dalgalarinin deterministik modellenmesi, temel olarak,
yiizeyden ilk birka¢ kilometredeki, yliksek kalitede, yliksek ¢oziiniirliikte 151n
kirmim (refractivity) profillerine dayanir. Bu hassas kirmnim profilleri,
genellikle yayillim o6l¢iimlerinin istatistiksel —analizi ile elde edilir. Bu
modelleri kullanarak gergek¢i yayilim tahmini yapabilmek i¢in, diinyanin
aylik ve mevsimsel standart haritalari, alt ve tist kirllimlar1 ve kanal (duct)

istatistiklerinin uzun siireli yayilim 6l¢iim verileri kullanilmalidir.

ve

Isin kirinimu, basing P, sicaklik T ve su basinc1 W élgiimlerine dayanan, genel

bir formiil ile hesaplanir. Bu formiil su sekildedir,

_T76P | 37310°W

N
T T?

(1.1)

Biitiin bu parametreler i¢in olduk¢a hassas Ol¢timler yapilmasina ragmen,
dogruluk limitleri, propagasyon varsayimlarinin esik degerlerinin niceliksel
ve niteliksel etkileri mertebesindedir. Ornegin AT, AP ve AW
Olcumlerindeki hassasiyet limitlerinif1’den kiiciik oldugu bir durumda,
kirmim  indeks profilinde 10%luk bir degisme so6z konusu olabilir. Bu
degisme, propagasyon kalitesinde ciddi hatalara yol agabilir. Yiikseklik
kirinim profilleri, propagasyonun sinyal giicline ve yoniine etki eder. Degisik
profiller i¢cin degisik sonuclar elde edilebilir ve kirinim her yerde aym

olmadigindan dolay1 degisik yayilim sekillleri de ortaya ¢ikabilir[1].

Incelenen bu ¢alismada, radyo dalgalarinin kestiriminde yeni bir teknik olan
1sidaki ve/veya basingtaki sapmalarin olasiliksal olarak tanimlandigi, genel
split step parabolik denklen(iSSPE)algoritmas1 kullanilmistir. Oncelikle
SSPEteknigi kullanilarak, diinya yiizeyindeki farkli kirinim profilleri i¢in
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yiiksekligin deterministik bir fonksiyonu olan dalga yayilimi ¢izdirilir. Bu

islem, bir ¢ok verici anten paterni ve degisik yayilim 6zelligi olan bolgeler
i¢in tekrarlanmstir.
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Sekil 1.1 100 km. uzaklik icin standart atmosfer kirilma indisi i¢in Anlatik ve PE yonteminin
sonuglar1

Sekil 1.1°de ylikseklikle kirilma indisinin azalmast durumunda (standart
atmosfer kosulu) belli bir uzaklikta yiikseklikle alan degisimine ait bir 6rnek
gosterilmigtir. Burada kirilma indisi profilinin her yiikseklikte sabit oldugu

varsayilmaktadir. Oysa, gercek problemlerde kirilma indisi profili de rasgele

ozellik gosterir. Bu duruma ait bir 6rnek Sekil 1.2°de gosterilmistir.
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Sekil 1.2 Standart atmosferde 1-boyutlu Gauss giiriiltiisti i¢in 100 km.'deki giriiltiisiiz sonug ve
Monte Carlo yaklasimi ile 1 kez ve 100 kez tekrar1 sonucunda elde edilen sonuglar

Sekil 1.2°den goriildiigii gibi yiikseklikle kirilma indisinin degisimi standart

atmosfer kosuluna uymakla beraber rasgele bir karakter gostermektedir. Belli
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bir ortalama degerin etrafinda kirilma indisi dalgalanmaktadir. Dogal olarak
bunun dalga propagasyonuna yansimasi beklenmelidir. Sekildeki alan profili

de bunu gostermektedir[1].
* Radar sistemlerinde deniz ve karanin neden oldugu sagilma modelleri:

Radar problemleri elektromanyetik disiplinin karmasik ve genis uygulama
alani olan bir dalidir. Nesnelerin elektromanyetik saciciligindan yararlanarak,
mesafe, hiz, geometri gibi parametreler elde edilmeye calisilir. Gonderilen bir
elektromanyetik isaret nesnelere carpar, radar alicis1 yoniinde sac¢ilan bilesen
alinip islenerek bu parametreler elde edilir. Amaca gore degisik radar tipleri
vardir. Ancak amaci ne olursa olsun, radar sistemlerinde ilgilenilen nesneler,
hedef, bunu digindaki biitiin isaretler istenmeyen isaretlerdir. Istenmeyen
isaretler giiriiltii (noise) ve kargasa (clutter) olarak ikiye ayrilir. Ozellikle
kargasa ve kargasadan kurtulma o6nemli bir problemdir. Ornegin, karada
konuglandirilmig bir hava savunma radarinda ugak, helikopter, fiize gibi
nesneler hedef, yagmur bulutlari, daglar, tepeler kargasadir. Ucakta
konuglanan ve yere bakan bir savunma radarinda ise, toplar, tanklar,

ucaksavarlar hedef, bitki ortiisii, kara, deniz ylizeyleri kargasadir.

Bu tip problemlerde, radar isareti ya da kargasanin = modellenmesi
deterministik olarak hemen hemen olanaksizdir. Yeryiizii piiriizleri, deniz
dalgalar1 gibi etmenlerin olusturdugu kargasa tamamen raslantisal
karakterdedir. Ustelik bu etmenler radar isaretine faz1 uyumlu (cohereny etki
yaparlar. Kargasayr giriiltiden ayiran en Onemli 6zellik de budur. Bu
durumda Monte Carlo teknigi kullanilarak, yiizey piirtizleri, deniz dalgalar1
raslantisal olarak modellenebilir. Ornegin, F. D. Hastings ve arkadaslar1 [3]
kaba yiizeylerden sagilma problemlerine, giicli FDTD[Yee, 4] ve Monte
Carlo teknigini birlikte uygulamiglardir. FDTD teknigi ile Maxwell
denklemleri iteratif c¢oziilerek, sagilma dogrudan zaman domeninde
modellenirken, yeryiizii pliriizleri Monte Carlo teknigi ile olusturulmaktadir.

Boylece, rasgele ylizeylerden sacilma problemleri modellenmis olmaktadir.

Yiiksek frekansli dalgalarin propagasyonunda ve saciniminda, genelde

yerylizii piiriizleri rasgele modellenmek zorundadir. Gerek kara {izerindeki



pliriizler (daglar, binalar, bitki Ortiisii vb.), gerekse deniz dalgalarinin bu

amacla modellenmesi icin Monte Carlo uygun bir yontemdir.

Ozellikle 1-boyutlu kaba yiizey modellemede Monte Carlo yontemi
1970’lerden beri oldukca yaygin bir sekilde kullanilmaktadir. Rasgele
sacilmay1 modelleyebilmek icin, 1-boyutlu yiizey uzunlugunun dalga boyuna
kiyasla c¢ok biiylik olmasi gerekmektedir ve dalga denkleminin ¢6ziimii,
100’den fazla ortalama sacilma ylizeyinin hesaplanmasi1 sonucunda

hesaplanarak, bir cok gerceklestirme i¢in ¢oziilmelidir.

FDTD (Finite Difference Time Domain — Zamanda Sonlu Farkigiptemi
ise, hemen her tirlii elektromanyetik problemde yaygin olarak kullanilan
giiclii bir sayisal tekniktir. FDTD, Maxvell denklemlerinin dogrudan zaman

domeninde ayriklastirilarak iteratif ¢6ziimiine dayanir.[Yee, 4]

Sekil 1.3’de 2-boyutlu FDTD hesap uzayr ve Monte Carlo teknigi ile
olusturulan yeryiizii profili gériilmektedir. Bu yapida, dalga sacilmas1t FDTD
ile hesaplanmaktadir. Aynmi islem bir ¢ok kez tekrarlandiginda kaba
yiizeylerden sacgilma probleminin istatistigi hakkinda olduk¢a gercekei veriler

elde edilmektedir.

Bu tip problemlerde sonuclarin giivenilirligi ancak deneysel yani Olci
sonugclari ile test edilebilmektedir. Monte Carlo teknigi ile ¢dziilen problemler

uzun deneysel verilerin istatistikleri ile karsilastirilabilir.

y

6g 165
X

Yiikseklik=f (x)

Sekil 1.3 Problemde kullanilan yiizey modeli.



Sekil 1.3’deki ornek, kara kargasasinin Monte Carlo anlaminda
modellenmesine aittir. Durum deniz kargasasinda daha da karmasiklagir.
Clinkd, bu kez rasgele olusan yiizey piiriizleri yaninda, rasgele hareket de s6z

konusudur.
* Radar sagilma ylizeyi modelleme:

Radar sa¢ilma yiizeyi (RSY) (Radar Cross Section, RG&dblemi bir diger

onemli elektromanyetik sa¢ilma problemidir.

RSY, bir hedefin radar isaretini radar alicist yoniinde yansitma yeteneginin

bir Olgiisii olarak tanimlanabilir. Matematiksel ifadesi;

2
E.l

o=|im 4mr? (1.2)
R A

2

olarak verilir. Buradag , n? cinsinden RSY degerini, Eg, verici tarafindan
hedef iizerine gonderilen radar isaretinin elektrik alan bilesenini, Es, cisimden
sacilan elektromanyetik dalganin elektrik alan bilesenini, r ise radarin cisme

olan uzakligin1 géstermektedir.

Hedeflerin RSY degerleri kullanilan frekansa ve hedef geometrisi ile hedefin
elektriksel oOzelliklerine baglidir. Frekansa bagli olarak hedefler farkl
davranig gosterdikleri ti¢ degisik RSY bolgesinde ele alinirlar. Bunlar;

1. Hedef boyutlarinin dalga boyundan ¢ok kiiciik kaldig: algak frekanslar
(Rayleigh)bdlgesi,

2. Hedef boyutlarinin dalga boyu mertebelerinde oldugu orta frekanslar

(Mie ya da rezonand)dlgesi ve

3. Hedef boyutlarmin dalga boyuna goére ¢ok biiyiikk oldugu yiiksek

frekanslar(optik) bolgesi olarak

isimlendirilir[5]. Rayleigh RSY bolgesinde, genelde hedefler noktasal hedef
davranisi gosterdiginden modellemek zor degildir. Rezonans bdolgesinde

hedef geometrisinin tamami1 RSY davranisinda etkilidir. Bu nedenle



geometrinin tamami modellenmek zorundadir. Giiniimiizde Moment ya da
Sonlu Elemanlar yontemleri gibi gtcli frekans domeni teknikleri ile FDTD
gibi gucli zaman domeni teknikleri rezonans bdélgesinde RSY
modellemelerinde basar1 ile uygulanabilmektedir. Ancak optik bolgede,
hedefin biitiin ayrintilar1 farkl etkiler gosterebileceginden, mevcut teknikler
yetersiz kalmaktadir. Optik bolgede hedeflerin ilizerindeki ayrintilar 6nem

kazandigindan Monte Carlo teknigine basvurulmaktadir.

RSY hesaplama problemini, aslinda karmagik bir cisimden geri sagilan
elektromanyetik dalganin hesabi problemine indirgemek miimkiindiir. Ancak,
cok basit geometrik sekiller icin bile, geri sacilan alanm1 belirlemede
kullanilabilecek kesin bagintilar mevcut degildir. Cismin biiyiikliigline ve
kullanilan elektromanyetik dalganin dalga boyuna gore bazi yaklasikliklarin

yapilmasi kaginilmazdir.

Ornegin, bir gemi s6z konusu oldugunda, kesin bir RSYdegeri veya egrisi
vermek miimkiin degildir. Radar gemiden gelen yansimalar1 yakalasa bile,
geminin yaptigi rasgele hareketlerden dolayi, geminin konumunun kii¢tik bir
degisimiyle bile olduk¢a hizli degisen RSY degeri oldukca fazla miktarda
degisebilir. Bu nedenle yapilan hesaplamalarda bu rasgele hareketler de

g6zoniine alinmalidir.

Gemi gibi konumu Onceden kestirilemeyen hedefler i¢in kullanilacak en
uygun yontemlerden biri, “"tekrarlanan denemeler yontemi" diye de
adlandirilan Monte Carlo simulasyon yontemidir. Bu yontemde temel olarak
yapilan RSY¥si etkileyen faktorlerden birini bir rasgele sayi lireteci kullanarak
degistirmek ve bunu bir ¢ok kez tekrarlayarak belirli bir yaklasikla sonuca

ulagmaktir.

E. Topuz ve U. Yapanel [6,7], optik bélgede RSY problemine Monte Carlo
teknigini uygulamislardir. Bu calismada, Monte Carlo yontemi, rasgele
hareketlerle olusturulan modelin incelenmesinde kullanilmistir. Incelenen
caligmada, bu rasgele hareketler siddeti deniz durumuna ve gemi dinamigine
bagli olan; yalpa (roll), suriklenme(yaw) ve bas-kig vurma (pitch) olmak

iizere, 3-cksende modellenmistir.



Olusturulan modelde;

Oncelikle geminin yapisma ve deniz sartlarma gdre geminin
yapabilecegi yalpa, siirliklenme ve bas-ki¢ vurma hareketlerinin

sinirlar1 belirlenir.

Radarin bakis aninda geminin konumunu belirlemek igin bir rasgele
say1 Ureteci kullanilir. Geminin 3-boyutta yaptig1 hareketlerin
sinlisoidal bir yapida oldugu varsayimi altinda, bu rasgele sayilar

kullanilarak geminin o an ki konumu belirlenir.
Belirlenen bu konum i¢in geminin RSY'si yaklasik olarak hesaplanir.

Bir bakis agisi i¢in, iglemler tekrar edilir ve o bakis agisina iliskin bir

dosya olusturulur.

Istenilen tiim bakis acilar1 icin ayni islemler yapilarak, her bakis

acisina ait bilgiler hesaplanir.

Daha sonra bu veriler uygun bir bicimde islenerek, istenilen olasilik

degerlerine karsilik diisen RSY egrileri belirlenir.

Asagidaki sekilde bir geminin RSY degerinin rasgele bakis acisina gore

degisimi (mikrodalga radar i¢in) goriilmektedir[6].

A5 Cicler [

50 80 100
Bahz Acim [ Derece )

Sekil 1.4 Geminin RSY'nin bakis acis1 ile degisimi
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Burada duz cizgi ile gosterilen geminin herhangi bir hareket yokken elde
edilen RSYdegeridir. Kesik ¢izgi ile gosterilen degerler ise, radarin o bakis

acis1 i¢in, gemiden alinabilecek farkli RSY degerlerinin %80 ninin mutlak
olarak altinda kalacag: bir esik degeridir. Bu durumda, radarin herhangi bir

bakis agis1 i¢in, gemi RSY’inin aldig1 deger, kesikli ¢izginin aldig1 degerden

%80 olasilikla daha diisiik olmas1 beklenir.

RSY degerinin geminin durumuna goére ¢ok hizla degismesi, radarin gemiye
bakis agisinin Olgme aninda kesin olarak Dbelirlenememesi, geminin
hareketlerinin deniz durumuna ve geminin yapisina bagli olmasindan dolay1
RSY degeri, belli bir gemi ve deniz durumu i¢in belirlenebilecek sinirlar
arasinda degisen raslantisal bir biiyiikliiktiir. RSY degerinin degisimlerini
istatistiksel olarak belirlemek mimkunddr. Bu durumda da, bu etkiler dikkate
alindiginda, tek ve kesin bir bakis acisindan veya RSY degerinden
bahsedilemez. Bu sartlar altinda bakis acisi, gemi hareketlerine bagli olarak
belirlenebilen sinirlar arasinda degerler alan raslantisal degerler alan
raslantisal bir degisken olarak tanimlanabilir. Bu durumda RSY'nin degeri,
belirli bir olasilikla, daha kiicliik (veya biiyiik) kalmasi gereken degerler

olarak hesaplanabilir.

Sekil 1.5’te s6z konusu geminin RSY davranisi agisal diagramlarda
gosterilmistir. Solda gemi hareketsizken, sagda ise gemi hareketli iken Monte

Carlo anlaminda benzetim sonuglar1 verilmistir.

Sekil 1.5 a) Gemi hareketsizken hesaplanan RSY degisimi,
b) %80 olasilik i¢in hesaplanan RSY degisimi
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Bu c¢aligmada Monte Carlo yontemi, geminin RSY hesaplamalariin
yapilmasi i¢in, ¢esitli bakis acilar1 ve gemi konumlari icin tekrar edilerek
uygulanmistir. Bu uygulamada, hesaplamalarda kullanilacak bakis ag¢isinin
verilen bir bakis acis1 etrafinda degisimi, bir rasgele say1 lireteci yardimiyla
belirlenir ve arka arkaya yapilan bir ¢ok deger icin RSY hesaplanir. Verilen
bakis acis1 i¢in, alinan bu orneklerden faydanilarak RSY degisimi bulunur.
Islem bakis acismin belirlenecek diger degerleri igin tekrarlanir. Sonugta elde
edilecek kesin bir RSY degeri degil, belirli bir olasilikla dl¢iilecek RSY'nin
kiigiik (ya da biiylik) olacagi degerdir. Boylelikle hesaplamalarda elde edilen
sonuclar gergcek degerlere, Monte Carlo yonteminin hata sinirlar1 dahilinde

yakinsayacaktir.

Bu durumda, her bir bakis agisi i¢in alinacak 6rnek sayisinin ¢ogaltilmasi,
sonucun dogru olma olasiligini arttiracagi icin, yeterli sayida 6rnek alinarak
her bir bakis agis1 icin islem tekrarlanarak, elde edilen sonuglarin istatistiksel

yapisi da incelenmelidir.
* Karmasik ortamlarda sagilma problemleri:

Ozellikle hava platformlarinda bulunan radarlar icin yeryiiziinde duran ya da
hareketli  nesnelerin algilanmasinda bitki Ortlisii ve zemin piiriizleri
onemlidir. Genelde rasgele degisim karakterine sahip bu problem Monte

Carlo yontemi ile modellenmektedir.

Ozellikle, VHF (Very High Frequency, 30MHz - 300MHz UHF (Ultra
High Frequency, 300MHz-1GHzjdarlarinda giincel problem bitki Ortiisii
ardma gizlenen hedeflerin saptanabilmesidir. Ornegin, ucaktaki bir VHF
radart bir aga¢ dibine mevzilenmis bir ka¢ askeri ya da bir koruluga
saklanmig bir tanki saptamada giicliik cekmektedir. Ya da bir ucaktaki radar
ile bitki ortiisti profili ¢ikarmada yerylizii doku farkliliklar1 (orman, bozkir,
calilik vb. ) ve etkileri iyi bilinmelidir. Bu konuda bir ¢ok grup ¢aligmalarini
sirdiirmektedir. Yukarida belirtilen radar tiplerinde agac cinsleri, dal
profilleri ve hatta yaprak bicimleri bile sagilma karakterini degistirmektedir.
[lk baharda agaclarin yaprakli olmasi ile sonbaharda yaprak dokiimiinden

sonraki durumda RSY davranislari ¢ok farkli olabilmektedir.
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Ornegin Y. Lin ve K. Sarabandi [8] calismalarindan birinde degisik agac ve
ormanlarin neden oldugu bitki ortiisiinden sagilmayr Monte Carlo yontemi ile
modellenmislerdir. S6z konusu c¢alismada bitki  Otriisliniin - nasil

olusturulduguna dair bir 6rnek Sekil 1.6’de gosterilmistir.

Sekil 1.6 Agaglarin biiylime modelleri

Sekilde agag tipleri ve biiylime modelleri adim adim gosterilmistir. Yapilan
caligsmada, cesitli agag tip ve biiyiime modelleri i¢in yansima modelleri elde
edilmistir. Ele alinan modellerin tamami1 gercek aga¢ modellerinden ve daha

onceden elde edilmis bilgilere dayanilarak ¢ikartilmistir.

Sekil 1.6’teki adim adim modelleme kullanilarak farkli agaclar ve bu
agaclardan olusmus orman profilleri ¢ikarilmaktadir. Sekil 1.7°te iki farkh

aga¢ modeli gosterilmektedir.
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Lal Lk
Sekil 1.7 Ele alinan iki farkli aa¢ modeli

Modelde iiretilen agac¢ topluluklari, govde ve dallar, silindir; yapraklar,
diskler halinde modellenerek iiretilmisler ve bu agac toplulugu modeli bir
yiizey lizerine yerlestirilerek, agaclarla kapl bir yer yiizeyi modellenmistir.
Modellenen bu karmasik yapilarin sagicilifi degisik sacilma durumlari
modellenerek elde edilmektedir. Ornegin bir agac dalinin sacilmasi, dogrudan
sacilan bilesen, dogrudan sagilan ve yerden yansiyan bilesen, yerden
yansidiktan sonra daldan sagilan bilesen, vb. bilesenlerin toplami seklinde

modellenmektedir.

Bu c¢alismada, Monte Carlo tekniginin katkisi ¢ok sayida aga¢ ve orman
modeli ile sagilma hesaplarmin tekrarlanmasi yoniindedir. Bu problemde
dallarin ve yapraklarin riizgar etkisi ile hareketli olmasi nedeniyle RSY
davraniginin ancak istatistigi ile ilgilenilebilir. Monte Carlo tekniginin katkisi,

problemden bu istatistigi elde etmekte olacaktir.

Yapilan ¢aligmalarin dogrulugunu kontrol etmek amaciyla, cok-frekans ve
polarizasyonlu yapay agiklikli radarlariyla (Synthetic Aperture Radabjrgok
gelis acis1 icin akcaagag topluluklarindan elde edilen sonuglar karsilastirilmig

ve oldukea yakin sonuclar elde edilmistir[8].

Yukarida siralanan 6rnekler elektromanyetik problemlerde Monte Carlo tekniginin
uygulanmasi hakkinda yeterli bilgi vermektedir. Benzetim anlaminda Monte Carlo

tekniginin uygulanmasina 6nemli bir 6rnek de sensor tiimlestirme ve gozetleme

14



sistemleri benzetimidir. Ornegin, denizlerimizdeki su iistii ve hava hareketliliginin
degisik sensorler kullanilarak gozetlenmesi ancak ve ancak Monte Carlo anlaminda
benzetim teknikleri ile modellenebilir. Belli bir anda gbdzetlenen bdélgede onlarca
geminin ya da u¢agin degisik rotalarda seyretmesi, radarlarin bu hedefleri yakalamasi

ve izlemesi Monte Carlo anlaminda modellenebilir. Burada yapilmasi gereken bu

gemi ugaklarla ¢ok sayida senaryonun olusturularak, sensor fizigine uygun olarak
denenmesi ve sonuclarin istatistiksel degerlendirilmesidir. Bdyle bir problemin
gercek ¢ozuminin elde edilebilmesi ve problemin deneysel olarak test edilebilmesi

olanaksizdir.

Bu bdliimde deginilmesi gereken son nokta, Monte Carlo tekniginin ele alinmasina
yoneliktir. Konuyu en iyi verecegi diisliniildiigiinden Monte Carlo teknigi integral

alma problemi {lizerinde islenmistir.

Bu calismada, elektromanyetik problemlerde boyutu arttikca ¢oziilmesi giiglesen ve
olduk¢a hizli degisen karmasik integrallere ve integral degerinin bulunmasi gereken
ama tam olarak deterministik bir ifadesi bulunamadigindan, sadece olasiliksal olarak
ifade edilebilen fonksiyonlara Monte Carlo integral alma yonteminin uygulanmasi

anlatilacaktir.

Bolum 2'de oncelikle, yontemimizi uygulayabilmemiz ve daha iyi anlayabilmemiz
icin olasiliksal kavramlardan bilmemiz gereken, ortalama, varyans ve Monte Carlo

yonteminin temelini olusturan merkezi limit teoreminden bahsedilecektir.

Bolim 3'te ise, Monte Carlo integral alma yonteminin esaslarindan bahsedilerek,
bliylikk elemanlar toplulugunun Ozelliklerinin, rasgele elemanlar secilerek
olusturulmus bir alt kiimesi aracilign ile ¢ikarildigt ve herhangi bir f(X)
fonksiyonunun(a,b) araligindaki beklenen degerinin, bu fonksiyonun bu araliktaki
rasgele secilen sonlu sayidaki noktalarin beklenen degerinden ¢ikarilabilecegi ve
Monte Carlo'nun dort temel yaklasim modeli anlatililacaktir. Bahsedilecek bu
modeller;reddetme (rejection - hit & miss), ortalama (averaging), kontrol degiskeni
(control variates) ve 6nem o6rneklemesi (importance samplingdntemleridir.
Bunlara ek olarak Monte Carlo yonteminin boyutla olan iliskisini daha iyi anlamak
amaci ile bir hiper kiire ele alinacak ve bir Monte Carlo yontemi ile farkli boyutlar ve

degisik ornek sayilar1 i¢in bu kiirenin integral degerleri hesaplanacaktir.
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Yontemin uygulanigint anlamak i¢in, Boliim 4'te, yontem oOncelikle sonucu bilinen
belirli integrallere uygulanacaktir. Buna ek olarak, belirli bir integral alma yontemi

ile cozime gidilerek, analitik yontemle rasgele bir ydontem olan Monte Carlo yontemi
karsilagtirilacaktir. Boylelikle yontemin uygulanabilirligi ve verimliligi hakkinda

genel bir fikir elde edilerek, sonuca ne kadar yaklasildigi goriilecektir. Coziime
gidilirken dikkat edilmesi gereken noktalar ve en iyi ¢Oziimiin ne sekilde elde
edilecegi tartisilacaktir. Ayrica, Onceden {iretilmis Ornek grubunun degisik
blyukluklerde 6rnek grubuna bdlunerek incelenmesi ve bunun etkilerinden
bahsedilecektir.

Sonuglarin yer aldigit Bolim 5'te ise, Monte Carlo yOnteminin avantajlari,
dezavantajlar1 ile birlikte calismanin amaci agiklanacaktir. Elde edilen sonuglar

yorumlanarak, bize olan ve olabilecek katkilarindan s6z edilecektir.
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2. OLASILIKSAL KAVRAMLAR

Doga bilimlerinde karsilastigimiz problemlerin bir ¢ogunda olaydaki degiskenlerin
degerleri bilindiginde probleme kesin ve tek bir ¢dziim bulunabilir. Ornegin bir
direncin ucglarindaki gerilim ve tizerinden akan akim bilindiginde direncin degerini,
veya bir kapasitenin sigasi ve uclarindaki gerilim biliniyorsa, kapasitenin tuttugu
yuki hesaplayabiliriz. Bu gibi olaylarda yasad@terministikanlamda bilinmektedir.
Buna karsilik Oyle olaylar vardir ki, bunlarda sonucu onceden bilmek miimkiin
degildir. Basit bir Oornek olarak, bir zar atisinda zarin hangi yiiziiniin gelecegini

Onceden kestiremeyiz.

2.1 Raslantisal Degisken ve Raslantisal Olay

Raslantisal degisken, gelecekteki bir gozlemde alacagi degeri onceden kesinlikle
bilinemeyen bir degiskendir. Bir =zarin atisinda gelecek say1 Onceden
bilinemeyeceginden bir raslantisal degiskendir. Bir giiriiltii 6rneginde, giiriiltiiniin
herhangi bir anda gozlenecek degerini 6nceden bilmek miimkiin olmadigina gore,

giiriiltii de raslantisal bir degiskendir.

Raslantisal degiskenlerdeki belirsizlik, bu degiskenlerin alacagi degerlerin 6nceden
tahmin edilemeyen ¢ok sayida etkene bagli olmasinda ileri gelir. Bu dogal
olaylardaki degismelerden kaynaklanabilecegi gibi, olay hakkindaki bilgilerimizin
yetersizliginden de ileri gelebilir. Boyle degiskenleri deterministikbir yaklasimla
incelemek miimkiin degildir. Yani degiskenin alacagi degeri o6nceden kesinlikle
belirleyebilen yasalar elde edilemez. Bunun yermebabilistik (olasilik¢i) bir

yaklagim gerekir.

Bir raslant1 degiskeninin gelecekteki bir gdzlem sirasinda alacagi deger kesin olarak
bilinemeyecegine gore, ancak degiskenin bir gbézlem sirasinda belli bir deger
almasina bir raslantisal olay denilir. Buna gore hangi raslantisal olayin goriilecegi

onceden kesinlikle bilinememekle birlikte, herhangi bir raslantisal olaymn goriilme
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olasiligin1 belirlemek miimkiindiir. Ornek olarak zar atisinda segilen bir saymin (1 ile
6 arasinda bir say1) gorlilmesi bir raslantisal olay olup bu raslantisal olaylardan

herhangi birinin goriilme olasig1 belirlenebilir.

Olasilik teorisinde bir raslantisal olayin meydana gelmesi sansi olasilik (ihtimal,
probabilite) ad1 verilen bir biiytikliikle ifade edilmektedir. Olasilik teorisinin temel
aksiyomuna gore her raslantisal olayin, degeri O ile 1 arasinda degisen bir olasilig
vardir. Raslantisal degiskeni biiyiik harfle (X), raslantisal degiskenin bir gozlem
sirasinda aldigr degeri bu harfe karsi gelen kiigiik harfle (X) gosterirsek,X=x;

raslantisal olaymin olasilig1 su sekildedir.

P(X=x)=p (2.1)

pi'nin 0 ile 1 arasinda degisebilen olasilik degerinin, 0 olmasi s6z konusu olayin
hicbir zaman meydana gelmeyecegini, 1 olmasi ise kesinlikle (her gozlemde)
meydana gelecegini gosterir. Olasilik 0'dan 1'e dogru arttikca gozlemler sirasinda o

olayin goriilme sansi1 da artar, yani olayla daha sik karsilasilir[9].

Ancak miihendislikte karsilastigimiz problemler genelde olasiliklarin basit bir

sekilde hesaplamasina olanak vermeyecek kadar karmasiktir.

2.2 Raslantisal Degiskenlerin Dagilimlar:

Bir raslantisal degiskene ve bu degiskenin icinde bulundugu topluluga ait cesitli
rasgele olaylarin olasiliklarini toplu bir sekilde bir dagilim fonksiyonu ile ifade

edebiliriz.

PR

Bir ¢ok raslant1 degiskeni belli bir aralikta kalsa bile, stirekli olarak degistiginden
basit olaylatn yani 6rnek uzayindaki eleman sayilart sonsuzdur. Ancak pratikte
raslantisal degiskenin degisme bolgesi genellikle alt ve {isten sonlu oldugu gibi,
Ol¢iimleri de belirli bir duyarlilikla yapilabildigi i¢in degiskeni sonlu sayida degerden

birini alabilen bir degisken gibi diistinmek daha anlamli olur.

Boyle bir degiskene ait ¢esitli basit olaylarin olasiliklari,

18



p(x) =P(X =x) (2.2)

seklinde x; degerlerinin hizasinda birer diisey ¢izgi ile gosterilirse, bu degiskenin
olasilik yogunluk fonksiyonu (probability density function-pdf) elde edilmis olur. Bu
fonksiyon, cesitli basit olaylarin olasiliklarini bir bakista gérmemize imkan verir.

Diisey cizgilerin olasiliklar1 toplami daima 1'e esittir.

> p(x) =1 (2.3)
%

Bagka bir gosterilis sekli de, rasgele degiskenin belli bir degere esit ya da daha kii¢iik

olasiligin1 ¢izmektedir;
F(x)=P(X<x) (2.4)

Pratikte Onem tasiyan bu fonksiyona olasilik dagilim fonksiyonu (cumulative
distribution function-cdfpdi verilir. Fonksiyonun tanimindan hemen goriilebilecegi

gibi;

Fx)= ¥ p(x,) (25)

(xj<%)

F(x) fonksiyonu 0'dan 1'e dogru gidildikg¢e artan basamakli bir fonksiyondur.

Olasilik yogunluk fonksiyonu ile olasilik dagilim fonksiyonunun ayni bilgileri
icerdigi ve ikisinden birisi bilindiginde digerinin kolayca elde edilebilecegi

gorulmektedir.

2.3 Siirekli Rasgele Degiskenler

Stirekli bir raslantisal degiskenin alabilece8i degerlerin (6rnek uzayindaki basit
olaylarin) sayist sonsuzdur. Baska bir deyisle, boyle bir degisken biitiin gercek sayi
degerlerini (ya da belli bir araliktaki biitiin degerleri) alabilir. Miihendislikte
karsilasian raslantisal degerlerin ¢ogu siirekli niteliktedir. Ornegin bir isaretin giicii,

bir elemanin {izerinden akan akim (ancak Ol¢lim araglarmin sinirlt bir prezisyonu
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olmasi dolayis1 ile bu degiskenlerin alabildikleri degerler sonlu sayida gibi

diisiiniilmekte, bu nedenle kesikli raslantisal degiskenler olarak ele alinmaktadir).

Stirekli bir raslantisal degiskenin alabilecegi degerlerin sayisi sonsuz, bu degerleri
alan olasiliklarmin toplami ise 1'e esit olacagindan X=X seklindeki basit olaylarin
olasiliklar sifira gidecektir. Bu neden siirekli raslantisal degiskenlerde basit olaylarin
olasiliklarindan s6z etmek yerine degiskenin X ile Xx+dx arasindaki bir aralikta
kalmasi seklinde bir birlesik olayin olasiligini tanimlamak yoluna gidilir. Bunun i¢in

olasilik yogunluk fonksiyonu p(X) s0yle tanimlanir;
p(x)dx=P(x < X < x+dx) (2.6)

Yani p(x) egrisi ile x-ekseni ve X, X+dxnoktalarindan gizilen diisey ¢izgiler arasinda

kalan degiskenin (X, x+dx)araliginda bir deger almas1 olasiligini géstermektedir.

Degiskenin sonlu bir aralikta bulunmasi olasilig1 bu aralig1 kiiglik parcalara ayirip, bu
parcalarda bulunma olasiliklarini toplayarak hesaplanabilir, sonu¢ olarak su ifadeye

varilir;

X2

P(x, < X <X,) :J’p(x)dx (2.7)

Degiskenin (—oo0,+00) araliginda bir deger almasi kesin (olasilig1 1 olan) bir olay

olduguna gore p(x) daima su kosula uyar;
J' p(x)dx=1 (2.8)

Siirekli degiken halinde olasilik dagilim fonksiyonunun tanimi degismez;
F(X) =P(X <X (2.9)

F(x) ile p(x) arasinda su iligskinin bulundugu yukaridaki denklemlerden hemen
gorulebilir;
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F(X)  =p(-o0 <X<+o) (2.10)

= J’ p(u)du

P(x) d * (2.11)

Olasilik dagilim fonksiyonu daima su kosullar1 saglar;

O<F(x)<1

F(-)=0

F(+00) =1

>0

F(x+¢&)=F(x)

F(X,) —F(x)=P(x <X <X,)

Yukarida tanimlanan olasilik yogunluk ve dagilim fonksiyonlar1 bir raslantisal

degiskenin olasilik uzayina ait biitiin bilgileri kapsar.

2.4 Dagihim Parametreleri

Bir rasgele degiskenin herhangi bir gozlem sirasinda alacagi deger Onceden
bilinemez, fakat; bu degiskenin icinde bulundugu toplulukla ilgili dagilim
fonksiyonu bu degiskenin ve i¢inde bulundugu toplulugun davranist ile ilgili bilgileri

kapsar.

Bazi durumlarda dagilim fonksiyonun verecegi bilgilerin tiimiiniin bilinmesi

gerekmeyebilir ya da bu bilgileri elde etmek mumkuin olmayabilir. Bu durumda,
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toplulugun raslantisal degiskenin ve davranisinin baslica 6zelliklerini birkag

parametre yardimiyla 6zetlemek miihendislik problemlerinde yeterli olabilir.

Degiskenin dagilim fonksiyonunun belli 6zelliklerini yansitan bu sayilara dagilim
parametreleri denir. Parametrelerin eldeki verilerden tahmin edilmesi
kullanilmas1 dagilim fonksiyonun tahmin edilip kullanilmasina gore ¢ok kolay olur.
Bu nedenle yaklasik da olsa ¢abuk cevaplarin elde edilmesi gereken miihendislik
problemlerinde bu parametreleri kullanmak gerekir. En ¢ok kullanilan parametreler
istatistik momenttipinde olan ortalama ve varyanst. Bu degerler, bir islem
yapilmak istenip, topluluktan rasgele elemanlar segilerek, yeni olusturulan ve
iizerinde islem yapilmasi daha kolay olan alt grup ile toplulugun tiimii hakkinda bilgi

sahibi olunulmaya calisildiginda grup parametreleri olarak da olduk¢a 6nemlidir.

2.4.1 Ortalama

Bir raslant1 degigkeninin dagiliminin en 6nemli degeri dagilimin merkez degeridir.
Cesitli gozlemler sirasinda degiskenin alacagi degerler g¢evresinde kiimelendigi
merkez deger ic¢in farkli tanimlar kullanilabilir. Ancak bunlarin i¢inde en cok
kullanilan ortalamaya dabekienen deger olarak adlandirilan ve asagidaki sekilde

tanimlanan degerdir.

Bu degiskenin ortalamasi, p(X) olasilik yogunluk fonksiyonu ile Xin g¢arpiminin

(—00,+00 ) araliginda integre edilerek bulunur.
X = [xP(9dx (2.12)

Raslantisal degiskenlerle ilgili problemlerde degiskenin ortalama degeri en anlamh
parametedir. Zira degiskenin dagilimimin merkezini, yani cesitli gozlemlerde
gbzlenecek degerlerin cevresinde dagilacagi degeri gosterir. Bir ¢ok problemde,
raslant1 degiskeni deterministik bir gozle ele alinmak istenirse, bu degiskenin daima

ortamala degerine esit oldugu kabul edilir.
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2.4.2 Varyans

Ortalama deger bir raslant1 degiskeninin merkezsel degerinin gostermekle birlikte,
bu deger cevresindeki yayiliminin biyiikligii hakkinda bir bilgi vermez. Bu

yayllmay1 6lgmek i¢in ¢ok kullanilan parametre varyan#ir.

0

Var(x) =a(x)? = (x-x| = J’(x—§<)2 p(x)dx (2.13)

—00

Yukaridaki ifadeye gore varyans, raslantisal degiskenlerin ortalamasindan farkinin
karesinin beklenen degeridir. Varyansin biiyiikk olmasi degiskenin ortalama

cevresindeki yayillmasinin biiyiik oldugunu gosterir.

Varyansin boyutu raslantisal degiskenin boyutunun karesi gibidir. Bu ¢ogu zaman
fiziksel acidan anlamli olmadigindan varyans yerine varyansin karekokii olan

standart sapmya kullanmak yoluna gidilir.

a(X) :Var(x)% = (? —QZF (2.14)

Standart sapma raslantisal degiskenle ayni boyutta oldugu i¢in daha anlamlidur.

Bir ¢ok hallerde ortalama ve standart sapmayi1 bilmek raslantisal degiskenin dagilimi
hakkinda hiikiim vermek i¢in yeterli olur. Standart sapmanin g6z oniinline alinmasi

ile degiskenin raslantisal karakteri de ana hatlariyla gozoniine alinmis olur.

2.5 Merkezi Limit Teoremi

Olasiliksal ¢alismalarin en ©Onemli amaci, ilgilenilen toplulugun istatistiksel
ozelliklerini ¢ikartmaktir. Boylelikle toplulugun elemanlar1 ve dagilimlar1 hakkinda
bilgi sahibi olunur. Merkezi limit teoremi, olasilik alanindaki en 6nemli teoremlerden
biridir. Bu teorem sayesinde cok genis bir olasiliksal olayi, normal dagilimi
kullanarak, hem pratik hem de teorik anlamda yorumlayabilmemizi saglar.
Boylelikle standart normal dagilim tablosunu kullanarak, 6rneklerin ortalamalarini da

kullanarak ¢6ziime ulasilabilir.
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Genellikle toplulugun elemanlarinin tiimii, islemin ¢ok pahali ve uzun olmasindan bu
istatiksel incelemede yer alamazlar. Bu nedenle, topluluk icinden secilen belirli
sayidaki ornek grubu ile toplulugun tamaminin 6zellikleri belirlenilmeye calisilir.
Topluluktan almman bu 6rnek grubunun istatiksel oOzellikleri, grubun tamaminin

istatiksel dzellikleri ile benzerdir[10].

~
e X
Alman Omekler
i
* O(X)

Standart Sapma

TOPLULUK

Sekil 2.1 Topluluk ve topluluktan alman 6rnekler

Toplulugun tiimiine iligkin olan ortalama ve varyans degerlerine; parametre
topluluktan secilen 6rnek grubundan elde edilen ortalama ve varyans degerlerine de
istatistik denilir. Genel olarak literaturlerde, parametrébeeek harflerj istatistikler
deLatin harfleriile gosterilir.

Bu elde ettigimiz degerleri soyle gosterelim;

Tablo 2.1Bir toplulugun parametre ve istatistikleri

| Parametre Istatistik
Ortalama X X
Standart Sapma a(x) g(x)
Bu tablodakiX degeri,
1 N
X=—3) X (2.15)
N &
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denklemi ile hesaplanir.

Bir toplulugun parametrelerini belirlemek i¢in, topluluk iginden ornekler alip,

ortalama ve varyansini hesaplariz. Bu islemde elde edilen degerler, toplulugun
parametreleri olanx ve o(x) gergek ortalama ve varyans degerlerinden sapma

gosterirler bu da bir nevi hataya sebep olur. Cunki elde edilen istatistikler, secilen
orneklerin ortalama ve varyansidir ve toplulugun tamami ele alinmadigindan dolayz,

gercek degerlerden farklilik gosterir.

Tepluluk Dagilime

rllr_'——\ Elnukl.l.'rin.ﬂ.rhlm:llnln D"d.gl]lml.
anx) )
/ _ Oix]
/ i
b .
X pa=X
Herhongi Bir Dozilm Morral Dagilam

Sekil 2.2 Merkezi limit teoremi

Toplulugun parametreleri ve topluluktan alinan orneklerin istatistikleri arasindaki
iligki, topluluktan alinan 6rnek sayisi ile ilgilidir ve merkezi limit teoremine gore bu

iligki su sekildedir;
Orneklerin ortalamasi, normal dagilim seklinde dagilir.

* Bu orneklerin ortalamalarimin dagilimmin ortalamasina, L, dersek, bu deger

toplulugun gercek ortalama degeri olan % parametresine esit olacaktir ve

ortalamalarin standart sapmasinin dagihmini, o (X) olarak gésterirsek, toplulugun

standart sapmasi ile arasindaki iliski,

o(X) = —= (2.16)
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denklemine esittir. Bu formiilden de goriilebilecegi gibi, tam dogru sonuca ancak
N - o durumada ulasilabilmektedir. Bu da bizim sonsuz Ornek alarak, kiimenin

tamamini incelememiz durumda s6z konusudur[10,11].

Burada sasirtici olan, merkezi limit teoreminde, meydana gelen hata yani olusan
sapma gercek toplulugumuzun dagilimma bagli degildir ve topluluktan aldigimiz
orneklerin ortalamasinin dagilimi daima normal dagilim seklindedir. Ayrica bir ¢ok
dagilim i¢in, normal dagilim N arttik¢a oldukga hizli bir yakinsama gosterir. Burada
N degeri, her ortalama degeri i¢in ele alinan 6rnek sayisidir, toplam Ornek sayisi

degildir.

Bir degiskenin normal dagilim ozelliklerini gosterebilmesi icin, eleman sayisinin
n>30 sartin1 saglamasi gereklidir. Eger eleman degerleri ¢cok ayrik ve birbirinden
oldukca farklilik gosteriyorsa, n>30 eleman sayisi degeri bize normal dagilimi
garantileyemeyebilir[10,11]. Boyle bir durumda 50 ve daha fazla 6rnek alinmasi
gereklidir. Cok karmagik dagilimli fonksiyonlarin incelenmesi oldukga risklidir ve
hesaplamalarda dikkatli olunmasi gereklidir ama boyle bir dagilima da ¢ok sik
raslanmaz. Yine de sonuclara daha iyi yaklasim yapabilmek ve giivenilirligi kontrol

etmek icin, 50'den fazla ortalama 6rnegi almak yerinde bir karar olacaktir.

Bu tezde yapilan denemelerde, ortalama hesaplari, 10, 20, 50, 100, 500, 1 000, 5 000,
10 000, 100 000, 1 000 000 ve 10 000 000'lik 6rnek gruplar1 olarak integral degerleri
yani ortalama degerleri hesaplanmistir. Bu 6rnek gruplarinin-ortalama degerlerinin-

dan>30 sartin1 saglamasi i¢in, her 6rnek grubu denemesi, 100 kez tekrar edilmistir.

2.5.1 Merkezi limit teoreminin ispati

Merkezi limit teoremine ulasmak igin, olasilik teorisinin temeli olan binom

denklemini ele alalim;

N! y

BM) =i —my P

g™ (2.17)

Bu denklemdeN bagimsiz deneme sonucunda elde edilen M basar1 olasilig: ifade

edilmektedir. Esitlikteki p degeri, deneme sonucundaki basar1 olasiligini, q=1-p

olmak Uzere deq degeri denemenin basarisizlikla sonuglanmasi olasiligini
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gostermektedir.N ve N-M degerlerinin yeterince biiyiik oldugu durumlar igin,

Stirling denklemini kullanarak,

n=n"e"y2m (2.18)

yazarak, (2.17) denklemini normal dagilim sekline getirelebiliriz;

1 O (x-x)20
o@vzr 2 202 (%) B (2.19)

B(M) O f(X) =

Burada, x = Npve o(X) = /Npqdegerine esittir. N — o 'a gittigi durumda, merkezi
limit teoremine goreN tekrar sonucunda Monte Carlo yontemi ile elde editeim
dagilmi, (2.19) denkleminde elde edilen f(X) normal dagilim davranisim

gosterecektir. Bagka bir deyisle, ¢ok sayida rasgele sayini toplami normal dagilim

karakteristigini gosterir[12].

(2.16) denklemini (2.19) denkleminde yerine koydugumuzda,

~_ [N 1 O NE&-x0
f(x)—\/;a(x)expg— 207 (%) E (2.20)

esitligini elde etmis oluruz. Boylelikle denklemimiz, Gauss dagilimi haline gelmis

olur.

Normal (Gauss) dagilimi, bir cok farkli mihendislik, fizik ve istatistik
problemlerinin ¢dziimiinde yaygin olarak kullanilir. Gauss modetin en dikkat
cekici yonu, merkezi limit teoremke dayanmasidir. Bu nedenle, Gauss modeli
genellikle eldeki verilerin, belli bir kurala uymadan, oldukca degisken dalgalanmalar

gosterdigi durumlarda kullanilir.

N ornek sayisi sonlu oldugu miiddet¢e, Monte Carlo hesaplamalarinda tam bir sonug

elde etmek miimkiin degildir. Bu ylizden X civarinda, X'in belirli bir olasilikla

icinde bulunacagi, bir limit deger veya bir aralik tahmin edilmeye calisilir.

Merkezi limit teoremini Ters Fourier Doniisiimii ile de ispatlayabiliriz;
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(X1, %,...2%) N tane rasgele bagimsiz degisken takimi olmak iizere; her X
degiskeninin ortalamasi [ ve varyansi 0; olankeyfi bir P(x,...,%) olasilik dagilim

fonksiyonunun oldugunu varsayalim. Bu durumda bu rasgele degisken grubunun

normalize raslant1 degiskeni,

X, Z U,
norm - N (2.21)
Z o,
1=1
‘in ortalama degeri p=0 ve varyansi da 0%=1 olacaktr. Eger degiskeni normalize

forma dontistiirmek miimkiin degilse,

X = X (2.22)

1
N &

g .
degiskeni normal dagilir ve ortalamasi px=px ve varyansi da o, =—="dir[13-20].

N

Bunu ispatlamak icin, ®f)'in Ters Fourier Déniisiimiinden yola ¢ikalim,

F_l[PX (f)] }eZTﬁfX p(X)dX (223)

(anX )"

p(X)dX

(an)” o

Z J3 X" p0xax
Z(ani: )n<Xn>

Bu (X") parametresini de,

<Xn> =<N (X, + X, ot X )“> (2.24)
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[

= IN'”(xl + X, + ot Xy ) PO ) POX, ). P(Xy ) A O, .. dXy

—00

seklinde yazarsak,

F[r(h)] :i(mf)"<xn> (2.25)
& n!
R L A COL CARLCRL L
pr= f(X+X2+ +XN)EF1
=J’ N J P(X;) P(X,)... p(Xy )dx,dX,...dXy
oo 278 (X +Xp +.. Xy ) [ 27w 0
= [e N p(xl)p(xz)---p(XN)d&dxz---deé[ e N p(xy)dx, O
£ S 8
2
D eN p(x)de
o ] -
_HrE E’% 1EQ—HZX ¥ [p(x)olxéf
-0 U =
i 2 w u)
DI (x)dx+&@jxp(x)dx (27;2 J’xzp(x)dx+O(N‘3)D
o O
_ O onf . (@A), L0
_%Jr N Y 2N? ) o )E
_ 0 onif , . (), , L0
—expé\llngﬁ N (x) L (x*)+O(N )%
Bu denklemi,
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In(@+x) = x—ix?+lysy
2 3

ile genisletirsek,

My =(x)

oldugundan denklem agagidaki hali alacaktir.

F_l[Px(f)] ﬂ%\ltﬂnf 27'lf <X > EM )2

2N*?

= i - 3\
expé?nf (x) N +O(N7?)
.8 - (af)o’D

Bu denklemin d&ourier Déniigiimiini alirsak,

X ™
PO = [ F [P (f)]df

2 2
@ onif (Nx_x)_M

= J’e 2N df

2
denklemini elde ederiza=2m(u, -x yeb= % olmak Uzere,

j—eiaf -bf?2 df
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denklemine, Abramowitz ve Stegun [14] (1972, s.302, denklem 7.4.6)'daki
dontisiimii uygulayip,
a2 r[

[e” G =e - (2.32)

seklinde yazabilecegimizden,

p(X) O O (2.33)
2
_ exp L 2K ] .
o ,em) o
E 2N H
27N B 4rm®(u, -x)*2N[
= 2 .2 ex 2 .2
4o, pH lém o,
_ w2
_ N B X'NE
o2 H 27 g
denklemini elde ederiz. Fakat buradq = jﬁ ve U, =M, oldugundan,
p(X) 1 H (U -x*E (2.34)

To2n 8 20, F

Merkezi limit teoreminin de temelini olusturan bu denklemdende anlagilabilecegi
gibi, cok fazla ve ilintisiz rasgele etkilerin toplami yaklasik olarak Normal Dagilim

gosterir.
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3. MONTE CARLO YONTEMIi

Monte Carlo yontemi, karmasik ve c¢ok elemanli sistemlerin 6zeliklerinin
hesaplanmasinda giicli bir yontem olmakla birlikte, deterministik olmayan
islemlerde de kullanilir. Matematik formiillerden ziyade, karmasik modellerin
canladiriimasi yoluyla modelleme yapan bir tekniktir. "Monte Carlo" terimi, Monte
Carlo sehrinde rasgele sayilarla oynanan rulet ve diger oyunlara benzer olarak,

rasgele sayilar kullanilarak, yaklasimin gergeklestirilmesinden kaynaklanmaktadir.

Monte Carlo yontemi, deterministik sayisal bir yontem degildir. Aksine, olasiliksal
temellere dayali olarak, matematiksel veya fiziki problemleri ¢c6zmeyi hedefleyen bir
yontemdir. Problemin ¢6zliimii i¢in olasiliksal bir benzerlik kurmaya calisarak,
deneysel Ornekleme araciligi ile, matematiksel bir model kurma amaci
giidiildiiglinden, yontem, raslantisal siireclerle tanimlanan fiziksel deneylere daha

yakin bir yontemdir.
Yontemde, rasgele sayilar tiretilerek dogal rasgele siiregler canlandirilmaya caligilir.

Bu yontemin temel amaci, biiylik elemanlar toplulugunun o6zelliklerinin, rasgele
olarak secilmis bir alt kiimesi aracilig1 ile ¢ikartilmasidir. Ornegin, herhangi bir f(x)
fonksiyounun(a, b)araligindaki beklenen degeri, bu fonksiyonun bu aralikta, rasgele

secilen sonlu sayidaki noktalarinin beklenen degerinden ¢ikarilabilir.

3.1 Hata Degerlendirmesi

Monte Carlo yontemi, hesaplamada kullanilan programin pek cok kez calistirilmasi
ve bir ¢ok denemenin sonucunda ulasilan ortalama ¢oOziimler verir. Bu nedenle
cozlimler, beklenen deger hakkinda yapilan tahminlerin dalgalanmalarimi ve de
yiikselip algalmalarini da igerir. Olasiliksal bir yaklagim yapildigindan, tam olarak

kesin bir sonug elde edilmesi imkansizdir.
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Monte Carlo yonteminin uygulanmasinda olusan bu olasiliksal belirsizligi
degerlendirmek icin, rasgele degiskenlerle iligkili ¢esitli olasiliksal tekniklere

bagvurulmaktadir.

Monte Carlo yonteminde, hata olarak incelenen, Boliim 2'de de bahsedildigi gibi elde
edilen beklenen deger ve bu degerin varyansi'dir. Bu degerler, Merkezi Limit

Teoremiile incelenir.

X rasgele degiskenimiz ve p(X) X-rasgele degiskenimizin olasilik yogunluk

fonksiyonu olmak tizere, bu degiskenimizin beklenen degeri xolmak tizere,
X = [xp(x)dx (3.1)

oldugundan, Monte Carlo yonteminde kullandigimiz gibi, X; rasgele ve bagimsiz
ornekler olmak Uzerex'in sectigimiz bu X bagimsiz noktalarina gore beklenen

degeri,

L1

K=—5 x 3.2
N2 (3.2)

olacaktir. X kestrimi, tam olarakx gercek beklenen degerine esit olmadigindan
dolay1, bu iki deger arasindaki sapmalar bize hata sagilimimizi verecektir. Bu hata
sacilimini bulmak i¢in, dncelikle X'in kendi gergek beklenen degerinden sagiliminin

karesinin beklenen degerini yani varyansini hesaplayalim.

Var(x) =o? = W = j:’o(x - ;<)Z p(x)dx (3.3)
(X - ;()2 = X2 - 2XX + ;(2 oldugundan, bu denklemi,

o2 = ixz p(x)dx— 2§<i xp(x)dx + }Zip(x)dx (3.4)

seklinde yazabiliriz. Buradan da,
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o) = (=X (3.5)
denklemini elde edelim. Varyang®(x 'i) karekoki, Xin beklenen degeri X

etrafinda ne kadar bir sacilim gosterdiginin bir ifadesidir ve standart sapmabu

durumda,

qm:%liﬁ (3.6)

seklinde gosterilir.

Bu standart sapma degeri, ayn1 zamanda meydana gelen hatanin biiyiikliigii hakkinda

bilgi verir. Beklenen degeri x olan, x degerimiz ile; Monte Carlo yonteminde
kullandigimiz beklenen degeri X olan, bagimsiz ve de rasgele segilen X 6rneklerinin

standart sapmasi arasinda,
o(X) =—= (3.7)

seklinde bir iliski vardir. Bu denklemden goriilebilecegi gibi, Monte Carlo
y(')'nteminde,; degerine ulasabilmek icin kullandigimiz, X 6rneklerinin sayis1 N ne

kadar yiksekseX degerimizde aradigimiz X degerine o kadar yakindir. Monte Carlo

yonteminde, hata boyuttan bagimsizdir ve (3.7) denkleminden goriilebilecegi gibi,

i ile orantili olarak azalir. Mesela, hatamizi % azaltabilmek icin, 6rnek sayimiz

N

N =100* N yani 100 kat arttirilmalidir.

N . 1 . . . : .
Diger integration metodlarinda hata — (0rnegin, trapezoid yonteminde) ile

Nd
orantilidir. Bu durumda da, Monte Carlo integral yonteminin 1 boyut i¢in, diger
yontemler kadar verimli olamayacagi ¢cok aciktir. Ancak standart sapma, integrasyon
boyutumuzdan bagimsiz oldugundan, yontemimiz, boyutumuzun d > 4 oldugu

durumlar i¢in daha hizli ve daha az hatali sonuglar verecektir. Buradan da
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anlagilabilecegi gibi, yliksek boyutlu integral alma islemlerinde Monte Carlo yontemi

daha avantajl1 haldedir.

3.2 Sayisal Integrasyon

Elektromanyetik problemlerin ¢oziimiinde ¢ok siklikla analitik olarak ¢oziilemeyen
problemlerle karsilasiriz. Ozellikle ¢ok boyutlu integral alma gerekliliklerinde

hesaplamalar oldukca yiliksek maliyetli ve de uzun siireli olmaktadir.

Monte Carlo yonteminde mantik, integre edilecek fonksiyonun pargasinin,
integrasyon araliginda normalize olasiik yogunluk fonksiyonu olarak

diistiniilebilecegi temeline dayanir.

Yontemde, integralin yakinsamasi kuadratik formiillerin aksine boyuttan
bagimsizdir. Integrasyon boyutu arttikca, kuadratik formiiller daha karmasik hale
gelirken, Monte Carlo yonteminin formiilasyonu ve hata biiylikliigii degismez.
Boylelikle, yiiksek boyutlu integral alinmasi gereken problemlerde, 4- veya daha
yiiksek boyutlu integrallerinin, bu olasiliksal yontemle ¢oziilmeleri daha elverisli
hale gelir. Bir ¢ok integral fonksiyonuna da rahatlikla uygulanabilen bir yontemdir

ve olusacak hata islem yapilmadan 6nce yaklasik olarak rahatlikla kestirilebilir.

Genel olarak Monte Carlo yontemi su sekildedir. Herhangi bir R bolgesindef

fonksiyonunun integralini almak isteyelim.

= [f (3.8)

x=(x*¢,....8), d integral boyutunu gostermek Uzere, béyle bir integralin kuadratik
olarak toplam seklinde gdsterilimi,

N N N
I :lf(x)dszxdzz...

1=1 l2=1 !

FOG, %) (3.9)

1

seklindedir. d boyutu ¢ok arttiginda ise, bu formiiliin ¢6ziimii gittikge karmasiklasir.
Ornegin, biz her boyut i¢in N,=10 6rnek elemani kullandigimiz durumda bile,

toplam almamiz gereken Ornek sayisi, 5 boyut igin, N=N%=10°=100000tur. Bu
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durumda problem, ¢oziilmesi olduk¢a zor bir problem haline doniisiir. Bu Ornek

sayisl i¢in, trapezoid yonteminde olusacak hata, 12 = 1 5= 1(:;0 =0.01; buna
N¢ 100000

karsihk  Monte  Carlo  yonteminde  meydana  gelecek  hata  ise,

11 1
JN 100000 31622776

boyut sayis1 arttikca Monte Carlo daha elverisli bir hale gelmektedir.

=0.00316d1r. Bu hesaplamadan da goriildigl gibi,

Boyle bir problem ise, Monte Carlo yonteminde basit bir toplama islemi halindedir.
f(x) fonksiyonumuzu,p(x), fonksiyonumuzund boyutlu rasgele degiskenleri igin,
olasilik yogunluk fonksiyonu olmak tizere, f(X)=p(x)g(x) seklinde yazalim. Bu
olasilik yogunluk fonksiyonu yardimiyla fonksiyonumuzdan X bagimsiz 6rneklerini

alirsak, Monte Carlo yaklasimimizi,

_ _ _1d
J (0= {909 pOyde= E,[900] = 5 9(x) (3.10)

e 1 .
olarak yapabiliriz. Bu yaklasimin hatasi, —— olmasina ragmen, d boyutu i¢in

N

kuadratik formiiliiniin karmasik halinden dolay1 tercih edilebilir bir haldedir.

R bolgesi, integrali aliacak f(x) rasgele degiskeninin tanimli oldugu bolge olmak
tizere; bu bolgede diizglin bir dagilim gdsteren olasilik yogunluk fonksiyonu igin
Monte Carlo yontemini uygulayalim. Bu durumda, f(X) rasgele degiskeninin

beklenen degeri,

f(x)=%£f :'—R (3.11)

varyansi ise,

_1 .., H1
Var(f(x))_ﬁlf Eﬁlfﬁ (3.12)

ve R bolgesi de,
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R = [ (3.13)

'dir. x degerinden, X ile ayni olasilik dagilimimna sahip, N tane bagimsiz X;,X,...,%

Orneginin beklenen degeri,

PO+ F )+t F(x,) _ 18
) =52 00 (3.14)

'dir. Bu formiil yardimiyla, f(x)'in gergek beklenen degerine olduk¢a yakin sonuglar
elde edilebilir.(3.11)denklemi ile(3.14)denklemini birlestirirsek,

R

N

i (%) (3.15)

denklemini elde ederiz. Bu formul herhangi bir soRIb6lgesindeki integrasyon igin

kullanilabilir.

) A

f(®) .

Alan =1

Sekil 3.1 Monte Carlo Integrasyonu

Ornegin, bu formiilii 1-boyutlu asagidaki gibi bir integrale uygulamak isteyelim,
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! :Jb' f (x)dx (3.16)

Bu denklemi (3.15)'daki gibi yazarsak,
b-a¢
=——Y f(x 3.17
N2 o) (317)

denklemini elde ederiz. Buradga (a, b)araliginda iiretilmis rasgele bir sayidir.

Asagidaki gibi 2-boyutlu bir integral alip,
bd
| = J‘ J’ f (X!, x%)dx'dx® (3.18)

Monte Carlo formalunt uygulamak istersek,

_b-ad-9&
=P 06 (3.19)

denklemini elde ederiz. Buradzx,l, (a, b) arasinda, )gzise, (c, d) arasinda rasgele

iretilmis noktalardir.

3.2.1 Reddetme (rejection veya hit & miss) yontemi

Oncelikle, Monte Carlo yontemini, belirli integral degerini bulmada kullanacagimiz
reddetme yontemi ile inceleyelim. Bu yontem uygulanmak istendiginde, oncelikle,
secilen bir dagilim fonksiyonu kullanilarak elde edilen rasgele degerlerden ¢oziime

gidilmeye calisilir.

Asagidaki belirli integralin degerini bulmak isteyelim,

! :}f(x)dx (3.20)
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Oncelikle, f(x) fonksiyonunu, fonksiyonu icine alan smirli bir bélgeye koyup, bu
bolgeyi de kiigiik parcalara bolerek, bolgenin ne kadarinin f(X) fonksiyonun icinde
kaldig ile bir benzerlik kurup, integral degerimizi bulabiliriz. Bunu sinirli bolgenin

icinde rasgele noktalar secerek de yapabiliriz.

Boylelikle, integrali alinmak istenen alan, sayisal olarak hesaplamalarla degil,
fonksiyonun i¢inde oldugu bdlgenin rasgele iiretilen noktalarla taranmasi ile bulunur.
Fonksiyonun tanimli oldugu bolgede secilen rasgele noktalarin kaginin fonksiyon
egrisinin altinda bulundugu, fonksiyonumuzun integral degerinin bulunmasina

yardimci olacaktir[21].

Bu yontemin bilgisayar algoritmasi ise, su sekildedir,

Oncelikle fonksiyonun,Sekil 3.2de goriilebilecegi gibi, integralinin alinmasi
istenen bolgedeki sinirlart belirlenir. Reddetme yonteminde fonksiyonu da igine
alan bu sinirlandirilmis bolge, integralin alinmak istenildigi (Xmin,Xmax) araligi ve
f(x) fonksiyonumuzun en yiiksek degerinden daha biiyiik olan bir fys degeri ile

belirlenir.

* Taranacak bolge bu sekilde belirlendikten sonra bolge, (Xmin,Xmax) araliginda

rasgele Uretilen; degeri segilir.
* O ile fys arasinda rasgele f; degeri segilir.

* Eger f; < fystise, li= fust(Xmax - Xmin) olarak atanir, degilse ;= O segilir.

Elde edilen bu;ldegerlerinin ortalamasi bulunarak, integral degerine erisilir.

Bu algoritmaya,

X

| = ]’axf (X)dx = ]’% p(x)dx (3.22)

formultnun bir nevi 6zel hali olarak bakabiliriz. Bu formilde, 3.2.4 Onem
orneklemesi (importance sampling) yonteminde anlatilacagi gibi, bir olasilik

yogunluk fonksiyonuna dayali 6rnek se¢imi yer almaktadir ve integral ¢oziimiine de,
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f(x)
p(x%)

(3.22)

degerinin ortalamasinin hesaplanmasi ile erisilir. Burada secilen olasilik dagilimi

(XminsXmay) araliginda diizgiin dagilan,

Xi st

'dir. Burada yapilan denemelerin degeri,

olasilig1 ile,
ust p(%)

degerini;

f(x
1- @ olasilig1 ile O degerini almaktadir[22].

st

Sekil 3.2 Reddetme yontemi

Bu algoritmanin pratik olarak aciklamasi ise, secilen noktalarin kabul veya
reddedilmesi olarak yapilabilir. Bu islem bir nevi, su sekilde de yapilabilir; secilen
rasgele noktalar, eger f(x) egrisinin altinda kaliyorsa kabul, iistiinde kaliyorsa
reddedilerek, toplam yapilan denemeden kag¢ tanesinin basarili sonu¢ verdigi

hesaplanir.

Bu islemin sonucunda, toplam deneme sayisinin basarili denemelere orani, toplam
alan ile integrali alinmak istenen f(X) fonksiyonunun alani arasindaki orani

verecektir.
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Bu esitligi formiilize edersek,

X max

= [ fOdk= e (x -x,) (3.24)
X 'min toplam

denklemini elde ederiz. Bu yontemin standart sapmasini, binominal dagilimin

varyans formll ile hesaplarsag,= — olmak Uzere,

toplam

J(Nkabul) = \ p(l_ p) Ntoplam (325)

'dur. Buradan, integral degerinin varyansi, dogrudan Ngapy degerine bagh

oldugundan, hatanin N degerine gore degisimini bulmak istersek,

U(I)Z — U(Nkabul)z (326)
N kabul2
— N kabul % _ N kabul E\‘ 1
- toplam
Ntoplam Ntoplam i N kabul2
1 1

N kabul Ntoplam
_ 1 - p%
Ntoplam p

elde edilir, denklemden de goriilebilecegi gibi, hata \/17 ile iligkilidir.
toplam

Reddetme yontemi, bir veya daha fazla keskin tepesi olan fonksiyonlar i¢cin uygun bir
yontem degildir. Sekil 3.3ten goriilebilecegi gibi, belirlenen alanda daha biiyiik bir
yer kaplamasina ragmen fonksiyonumuzun altinda, denenen sadece bir nokta kalmis
ve kabul edilmistir. Boyle bir durumda, toplam deneme sayisi ile kabul goéren
noktalarin orani, toplam alan ile fonksiyon alanina oranindan olduk¢a uzak bir deger

cikmasi engellenemez.
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fur |

min Kmax

Sekil 3.3 Reddetme yontemi icin verimli olmayan keskin tepeli fonksiyonlar

Reddetme yonteminde kullanilan 6rneklerin birbiri ile korelasyonu (ilintisi) yoktur.
Yontemin dezavantaji ise, bolge siirlarinin yanhs belirlenmesi durumunda ortaya
cikar. Eger deneme bolgesi, ger¢ek fonksiyonu oldukca iyi bir sekilde i¢ine aliyorsa
ve yakindan takip edebiliyorsa verimlidir. Aksi takdirde, reddedilen noktalarla
oldukca vakit kaybedilebilir.

3.2.2 Ortalama (averaging) yontemi

Bu yontem, fonksiyonun integral degerinin bulunmasinda dogrudan fonksiyonun f(X)
degerinin kullanilmasindan dolayi, probleme daha dogru bir yaklasim saglar.
Ortalama yontemi de rasgele secilen noktalar {izerinde islemler yapar. Reddetme
yonteminden farkli olarak, alan taramak yerine, seg¢ilen noktalardaki fonksiyonun

degerleri, aranilan integralin bulunmasinda kullanilir. Yine
b
= [ f(xdx (3.27)

denklemini ele alalim. V bélgenin hacmi olmak tzere ve
g(x) 1 xdegiskeni bolgenin iginde, (3.28)

0 diger
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bu denklemi verimli bir yaklagim ile su sekilde yazabiliriz.
b 1
I :'!’ f (x)g(x)dx=VJa’ f (X)g(x)Vdx (3.29)

olarak belirlersek3.29 denklemi,x rasgele degiskeninin bdlge icerisinde uniform
dagildigt durum igin, h(X)=g(X)f(x)V fonksiyonunun beklenen degeri olarak

yorumlanabilir.

Bu yaklasim altinda,
1 V ¢

==Y h(x)=—Y f(x 3.30
DL OLESRLEE (3:30)

yazilabilir[21,22].

Sekil 3.4 Ortalama Yontemi

Bu yontemin bilgisayar algoritmasi ise soyledir,
*  (Xmin,Xmax) araliginda rasgele iiretilen x; degeri segilir.
o |i= (X)) (Xmax - Xmin) olarak dogrudan hesaplanir.

* Elde edilen bu; degerlerinin ortalamasi bulunarak, integral degerine erisilir.
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Yine bu algoritmada kullanilan formiil, integral hesaplamasinda kullanilan (3.21)

denkleminde, olasilik yogunluk fonksiyonu olarak, p(x) degeri yerine,

p(x) = (; konulmasi sonucu elde edilmis bir formiildiir.
X

max ~ ““min

Fonksiyona dayali 6rnekleme, ¢ok hizli ve ¢ok basit kullanimi oldugundan oldukga
avantajli bir yontemdir ve kullanilan 6rneklerin birbiri ile korelasyonu yoktur.
Yontemin uygulanabilirligi, fonksiyonun analitik bir ifadesi olmasi gerektiginden

kasithidir.

3.2.3 Kontrol degiskeni (control variates) yontemi

Bu yontemde, integrali alinmak istenen f(x) fonksiyonuna oldukga yakin, bir h(x)
yardimc1 fonksiyonu kullanilir. Bu yardimci fonsiyonun integral degeri,
fonksiyonumuzdan daha kolay hesaplanabilir veya ¢6zimu bilinen bir fonksiyon

olmalidir.

f(x)
h(x,)

F%,)
: h(x)

X min X max
Sekil 3.5Kontrol Degiskeni Y éntemi

Boylelikle secilen her rasgele noktada, iki fonksiyonun farkindan, integral degerleri
arasindaki fark kestirilmeye c¢alisilarak, elde edilen deger, bilinen h(x) fonksiyonun
integral degerine eklenerek, aranilan f(x) fonksiyonun integral degerine ulasilmaya

caligilir. h(x) fonksiyonun integral degeri,
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|, = xmfh(x)olx (3.31)

Xmin

Monte Carlo yaklasiminda ek bir dogruluk faktorii olarak islemimize etkir ve

algoritmamiz su sekildedir,
*  (Xmin,Xmax) araliginda rasgele iiretilen x; degeri segilir.
o 1i= (f(xi) - h(X)) (Xmax - Xmin) + In olarak dogrudan hesaplanir.

Burada, sadece varyarfx;) - h(x)) farkindan kaynaklanmaktadir ve Iy, integral
degerinin buna herhangi bir katkisi yoktur. Bu nedenle, h(x) belirlenmesinde ne
kadar iyi bir tahmin yaparsak, o kadar kiigiik bir varyans olusur, bu da daha az hata
ile sonuca ulagsmak demektir. h(x) = f(x) durumunda en iyi yaklasim fonksiyonunu
kullanmis oluruz ve bunun sonucunda, integral sonucuna tam olarak ulasarak, hatayi

da ortadan kaldirmis oluruz.

h(x) = f(x) + sabitdurumunda da, olusacak varyans sifirdir ve yapilacak her tahmin

dogrudur.
Yine (3.21) formulune benzetmek istersgkx) = + olmak uzere,
I, _f(x)=h(x)+E(h(x)) (3.32)
) p(x,)
meh(x)dx

f(xi)_h(xi)'*'xmmT

Idx

j— min

P(x;)

f(x)=h(x)+ P
- X

— ( max min

p(x)
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— f(xi)_h(xi) +
p(x)

I h
algoritmamizda kullandigimiz formiilii elde edebiliriz[22].

3.2.4 Onem orneklemesi (importance sampling) yontemi

Bu yontem, kontrol degiskeni yontemine oldukga benzer bir yontemdir. Fakat burada
aranilan f(X) fonksiyonunun hakkinda kullanilan yardimci fonksiyonun etkisi,

toplamsal degil, carpimsaldir.

Onem 6rneklemede amag, fonksiyonun karakteristigini belirleyebilecek ve fonksiyon
hakkinda en ¢ok bilgi alinabilecek bolgelerden 6rnek alarak, bilgiye hizli erismektir
Boylelikle gereksiz nokta se¢imlerinden kaginilarak, vakit kayb1 azaltilir ve islem

zamaninin azaltilmasi saglanir.

Bu yontemde, kontrol degiskeni yonteminde integrali alinmak istenen fonksiyona
benzer fonksiyon olarak kullanilan, h(x) yaklasim fonksiyonu 0&rneklemede
kullanilacak olasilik yogunluk ve dagilim fonksiyonunun elde edilmesinde kullanilir.
Bu nedenle,f(x) fonksiyonumuza ne kadar yakin bir h(x) yaklasim fonksiyonu

kullanirsak, o kadar iyi sonuglar elde ederiz.

h(x) yaklasim fonksiyonundan elde edilen olasilik dagilim fonksiyonunun tersi
alinarak, rasgele sayilar iretildiginden bu yontem ters (inverse) teknilolarak da

adlandirilir.

Oncelikle bu yéntemi uygulamak igin, integrali almabilen, ya daha Onceden
belirlenmis uygun bir olasilik yogunluk fonksiyonu ya da fonksiyonumuza yakin

olan bir fonksiyon ele alinarak islem yapilir.

Bir yaklagim fonksiyonunu kullanacak olursak, h(x) yaklasim fonksiyonunun, f(x)

fonksiyonumuzun integrali alinacagi bolgede integralinin alinmasi gerekmektedir.

I, = X]’axh(x)dx (3.33)

Xmin
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Boylelikle yaklasim fonksiyonumuzu, elde ettigimiz integral degerine boliip
normalize ederek, integrali alinacak f(x) fonksiyonumuza uygun bir olasilik yogunluk

bir fonksiyonu elde ederiz.

h(y)  _ h(x)

P(X) = (3.34)

[h(x)dx '

min

Artik bir olasilik yogunluk fonksiyonu elimizde olduguna gore, fonksiyonumuza

yontemimizi uygulayabilir. (3.21) denklemimiz bu durumda,

_ f(x) _Of(x)4
| = = .
o) B B

(3.35)

haline doniisecektir. En ideal ¢oziim, h(x)=f(x) oldugu durumda ger¢eklesecektir ve
0 varyansli yani hatasiz bir sonug ortaya ¢ikacaktir. Ayn1 zamanda, normalize p(X)

degeri ayni ¢ikacagindan, h(x)=f(x)*sabit durumunda da hatasiz ¢6ziim gegerlidir.

Simdi bu sonuca nasil ulastigimizi inceleyelim; 6rnegin, bir f(x) fonksiyonunun,
x=(x2,....&) olmak tizere, cok boyutlu bR bolgesinde integralini aimak isteyelim.
Bu f(x) fonksiyonunuR hacminde tanimli sectigimiz bir olasilik fonksiyonu p(x) ile

isleme sokarak,

If(x)dx:I ng %)(x)dx:Ig(x) p(x)dx (3.36)

seklinde tekrar yazabiliriz. Boylelikle, f(X) fonksiyonundan diizgiin yogunluklu dx
operatorii ile 6rnekler almak yerine, doniistiiriildiigii g(x) fonksiyonu sayesinde daha

uygun bir olasilik yogunluk fonksiyonuna sahip p(x)dxile 6rnekler alinir.

Bu olasilik yogunluk fonksiyonunu R bolgesinde tanimladigimizdan dolayi,

!p(x)dle (3.37)
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'dir. Boylelikle, bu olasilik yogunluk fonksiyonuna sahip, R bdlgesindeki x;

orneklerini istedigimiz olasilik yogunluk fonksiyonuna uygun olarak secebiliriz.

Bu doniisiim sayesinde integral denklemimiz,

3.38
p(x) p(x) N (3.38)

0f (x) E_ ”X)ﬁ
EJ’f(X)dX _J’ (X) p( ) <f(X)>i Hp(x)2 Ep(x)
f()

haline doniisiir. Denklemde <
p(x)

> olarak goziken terimN Ornegin aritmetik

ortalamasin1 gostermektedir. £ olarak goziken terim ise, hata kestiriminin standart

sapmasidir[23].

Bu yontemde belirlemesi gereken ise, olasilik yogunluk fonsiyonunun nasil

secilecegidir. Burada p(x) fonksiyonu, hatayr minimum yapacak sekilde se¢ilmelidir.

Bu ancak, karekok igindeki ifadeye en kiigiik degeri aldiracak olan, g(X) :w

p(X)

ifadesini bir sabite esit hale getirerek miimkiindiir.

X .. . .. C o .
<L> terimi Monte Carlo integralinin kestirimi oldugundan, hata terimini tekrar

p(x)

ele alalim,

TR f(x) ) f(x) K
S= - X)dx d d f(x)d 3.39
<p(x)2> <p<x)> 7 PO % PO = [0 & % Hbg (3:39)

Hatayr minimum yapmak icin, Lagrange c¢arpanin1 denklemimize ekleyip,

esitligimizi p'ye gore tlireterek ¢ozlime gitmeye calisalim,

_oHfm? O f 5
0= a—% o) dx gf(x)de +}\'!: p(x)de (3.40)
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Ortadaki terimp(x)ye bagl olmadigindan, p(X) se¢giminde onu gozardi edebiliriz. Bu
f(¥)?
p(¥)*

kullanacagimiz olasilik yogunluk fonksiyonunun en ideal hali,

durumda, 0= -

+A olacagindan, fonksiyonumuzun integralini almak igin

oI [F® |1

A J’| f (x)]dx I (3-41)

p(

olacaktir[23]. Monte Carlo 6rneklerinin se¢iminde kullanacagimiz, olasilik yogunluk

f(x)

fonksiyonumuzp(x) boyle segildigi takdirde, formiliimiizdeki %)
P(X

oranimizin

varyans1 O'a azalacaktir. Bu sadece analitik olarak bildigimiz fonksiyonlarda tam
olarak belirlenebilir, bu durumda da fonksiyonumuzun analitik olarak ¢éztmuni
yapabiliriz. Fonksiyonumuzun tam degerini bilmedigimiz durumlarda ise,
fonksiyonumuza benzer, bu yaklasik p(x) ifadesini kullanarak, integral degerimize

yakin sonuclar elde edebiliriz.

Bu durumda ise, integral c6zimune,

=Ly 00 (3.42)
N & p(x)

formiiliiyle yaklasmaya calisiriz. p(x) fonksiyonuf(x) fonksiyonunun degerine ne
kadar yakinsa, bu formiil yardimiyla elde ettigimiz deger, o kadar aradigimiz integral

degerine esittir.

Bu yontemde olugan hata ise (3.7) denkleminden biraz farklilik gosterir. o (X)'in

ifadesine, olasilik yogunluk fonksiyonu da girdiginden dolayz,

o(x)? = LX)zolx— |2 (3.43)
p(X)

seklini alacaktir.
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f(x)?
P(x)

dxq f (x)?dx (3.44)

oldugundan dolay1 meydana gelecek hata, daha kiigtiktiir.

f(x) fonksiyonu bilinemese bile, onun hakkindaki her ek bilgi p(x) fonksiyonumuzu
belirlenmesinde ve boylelikle olusacak hatanin azaltilmasina faydali olacaktir.
Unutulmamasi gereken bir nokta da, olasilik yogunluk fonksiyonu ne kadar karmasik

olursa, hesaplama maliyetinin de o kadar yiikselecegidir.

Fonksiyonumuzun negatif degerler aldigi durumlarda, segecegimiz olasilik yogunluk
fonksiyonumuz negatif degerler alamayacagindan dolayi, fonksiyonumuza bir sabit
ekleyerek, tamamen pozitif hale doniistiirebiliriz. Bu durumda ise, elde ettigimiz
integral degerimizden, (sabit * bolge biiyiikliigiimiiz) kadar bir degeri ¢ikartmamiz

gerekecektir.
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4. MONTE CARLO YONTEMININ UYGULAMALARI

Analitik integral alma yontemlerinde, elde edilmek istenen integralin degeri, belirli
adimlarda fonksiyon degerlerinin hesaplanmasi ile yapilmaktadir. Bu fonksiyon
degerleri, sanki fonksiyon dikddrtgen alanlara parcalanmis gibi, adim biiytikligi ile
carpilir ve elde edilen parga dikdortgen alanlarin toplami ile integral degerine
yakmanir. Gergek integral degerine ne kadar iyi yaklagilmak isteniyorsa, adim
sikligin1 da o kadar arttirmak gerekmektedir. Bu da fonksiyonun sabit degisim
gosterdigi bolgelerde klasik yontemleri oldukca verimsiz bir hale getirmektedir.
Adim sikligin1 azaltmak da fonksiyonun hizli degisikliklerini kaybedilmesine yol
acmaktadir. Bu da yiiksek dereceli veya karmasik yapili fonksiyonlarda analitik

yontemi oldukca verimsiz bir hale getirmektedir.

Buna karsilik Monte Carlo yonteminde, fonksiyonun yavas degisimlerinde az, hizlh
degisimlerinde ise ¢cok drnek alinmasini saglayacak olasilik yogunluk fonksiyonlari
kullanilabilmektedir. Orneklerin segimi  fonksiyonun boyutundan bagimsiz
oldugundan, fonksiyonun karmasikligi ¢6ziime herhangi bir etkide bulunmaz. Hatta
yontem, fonksiyon karmasiklastikca analitik yontemlerden daha iyi ve hizli bir
yakinsama saglar. Tabii bunlarin yaninda Monte Carlo yontemini uygulayabilmek
icin bazi noktalara dikkat edilmelidir. Yardimci fonksiyonlarn veya olasilik
yogunluk fonksiyonlarinin iyi belirlenmedigi durumlarda yontem avantajlarin

tamamiyle kaybedecektir.

4.1  Monte Carlo Yontemine fliskin Ornekler

Monte Carlo yonteminin avantajlarin1 ve de dezavantajlarini anlamak igin, yontemi

cesitli ornekler ve drnekleme teknikleri agisindan inceleyelim:

Bu 6rneklerde Monte Carlo yontemi kulanilarak bulunmaya calisilan Ttnin degeri,

alan1 Tt/ 4 olan birim ¢eyrek daire alanindan ters islem yapilarak elde edilmistir.
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Alan =77 / 4

Sekil 4.1 rtdegerinin bulunmasinda kullanilacak ¢eyrek daire

Bilindigi gibi koordinat diizleminde bir dairenin denklemi, » yari¢ap olmak Uzere,
X2+ V=P (4.1)
Seklindedir. Birim dairenin yari ¢ap1 1 oldugundan,

X +y=1 (4.2)

Yazabiliriz. Bu denklemdey'yi x cinsinden elde etmek istersek,

y =+1-x° (4.3)

Seklinde yazabiliriz. Boylece, verdigimiz her X'e karsilik diisen y degerini kolaylikla

bulabiliriz. Orneklerimizde bu bagint1 kullanilarak, x ve yeiftleri isleme sokulmustur.

Bir dairenin de alan1 bilindigi gibi,
Alan =Ttr? (4.4)

'dir. Birim daire ile ilgilendigimizden alanimizin degeri, Ttdir. Monte Carlo yontemi
kullanilarak alani bulunacak olan bolgenin alan1 174 olan ¢eyrek daire oldugundan,

bu ¢eyrek dairenin alanini bularak, tdegerine de ulagsmis oluruz.
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Bu degere analitik yollarla ulagmamiz ise, pek miimkiin degildir. Denklem (4.3) 'tiin

(0,1) araliginda integralini almak istedigimizde, analitik olarak yalnizca,

1 .
y:lel— xzdlexxll—x2 , AresinGg _ 7 (4.5)
| 2 2 4

Degerini elde edebiliriz. Bu da bizim Ttsayisina dogrudan ulagmamizi saglayamaz.

4.1.1 Reddetme yonteminin uygulanisi ve sonug¢lari

Reddetme yonteminde amag, nlimerik bir deger bulmaktan cok, integre edilmek
istenen egri alaninin -rasgele iiretilen sayilardan elde edilen- noktalarla taranarak,
integrali alinmak istenen bolgedeki noktalarla, toplam nokta sayisi arasinda bir oran

bulmaktir[ EKLER].

Sekil 4.2 rtdegerinin reddetme yntemi ile bulunmasi

Uretilen bu rasgele sayilarin, kacimin egrinin altinda, kaginin egrinin iistiinde
kaldiginin orani, bu integralin degerini verecektir. Egrinin altinda kalan noktalar
integral degerine eklenecek -yani kabul edilecek- egrinin iistiinde kalan noktalar ise,
bulunmak istenen egrinin integraline herhangi bir etkide bulunmayarak

reddedilecektir. Boylelikle toplam nokta sayisi ile egri altinda kalan nokta sayisi
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arasindaki oran, taranan toplam alan ile integrali bulunmak istenen alanin oranina

esit olacaktir.

Taranilacak alanin belirlenebilmesi icin, fonksiyonun ilgilenilen bolgedeki en yiiksek
degerinin bilinmesi gereklidir. Reddedilen noktalarin bizim i¢in herhangi bir 6nemi
ve de degeri yoktur, sadece meydana getirdikleri zaman kaybi ile islem zamaninin
uzamasina neden olurlar. Bu nedenle reddedilen nokta sayisinin minumuma
indirilmesi amagclanir ve nokta atisinin yapilacagi bolgenin en iyi bir sekilde
belirlenmesine caligilir. Eger gerektiginden genis bir alan taranirsa, reddedilecek
nokta sayisi ¢ok fazla artarak, biliyiik bir vakit kaybina neden olunur. Alan
gereginden kiiciik tutuldugu takdirde ise, integrali bulunacak olan bolgenin bir kismi

disarida kalacagindan dolay1 yanlis bir sonug elde edilir.

Bu yontemin dezavantaji, belirlenen boélgenin tamaminin taranmasi gerekmesi ve
reddedilen noktalarin integrale herhangi bir katkisi olmamasindan dolay1 sadece

vakit kaybina neden olmalaridir.

Yapilan programda Ttdegeri asagidaki degerlerde elde edilmistir. Yapilan denemeler

belirli bir islem grubunun 1 kez ve 100 kez tekrarinin ortalamasi seklinde verilmistir,

Tablo 4.1 Reddetme ydntemi ile elde edilen sonuclar

1Gruptaki | 1 Grupicin 1w | mden Sapma%| 100 grup icim | Tden Sapma%
Ornek Sayisi

10 3.59999990 14.59155273 3.20000029 1.85916984
20 4.00000000 27.32395172 3.16599917 0.7768808¢
50 2.88000011 -8.32675171 3.16479945 0.73869252
100 3.35999990 6.95211554 3.14760041 0.19123012
500 3.30399990 5.16958046 3.13472056 -0.21874818
1 000 3.15599990 0.45859405 3.14639926 0.15299623
5000 3.17280006 0.99335992 3.14001441 -0.05023983
10 000 3.14000010 -0.05069518 3.14178109 0.00599534
100 000 3.14463997 0.09699627 3.14184642 0.0080748d
1 000 000 3.14141989 -0.00550209 3.14164448 0.00164683
10 000 000 3.14156008 -0.00103970 3.14161110 0.00058436

Tablodan da goriilebilecegi gibi, reddetme yonteminde Tt degerinden olan sapmalar,
ornek miktariin ¢ok arttilmasina ragmen 6nemli bir iyilesme gosterememistir. Bu da
yontemin, bu 6rnek icin verimsizligini gdstermektedir. Burada rasgele sayi iiretecinin

de 6nemi c¢ok biiyiiktiir, eger ideale yakin bir sayi tireteci kullanmazsak, drneklerimiz

54



iiretecin idealsizliginden dolayi, bir bolgeye yogunlasilarak alinacagindan dolayi, o

bolgenin karakterini gosterecek ve istedigimiz degere tam olarak yaklasamamamiza

neden olacaktir.

Monte Carlo ydntemininin avantajlari, boyut sayisi arttikca ve nokta se¢iminde,

alinmasi istenen integrale uygun bir olasilik yogunluk fonksiyonu segildiginde ortaya

cikar. Bu Ornekteki incelememiz, 1 boyuta iligkin ve nokta se¢imi esit olasilikla

yapildigindan dolay1

(uniform dagilimli bir olasilik yogunluk fonksiyonundan)

Monte Carlo yonteminin avantajlari elde edilememistir.
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N. ORNEK TEKRARI

Sekil 4.3 Reddetme yontemi ile elde edilen sonuglar

Yukaridaki sekilde reddetme yonteminin 100, 10.000 ve 1.000.000 6rnegin 100'er

kez alinmasina dair sonuglar goziikmektedir. Beklendigi gibi, 100 6rnek alindiginda,

Ttden sapma miktar1 oldukca fazladir. Bu sag¢ilmanin miktar1 6rnek sayisi arttikga

azalmaktadir.
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4.1.2 Ortalama yonteminin uygulanisi ve sonuglari

Ortalama yontemi de rasgele sec¢ilen noktalar {izerinde islemler yapar. Fakat,
reddetme yonteminden farkli olarak, alan taramak yerine, secilen noktalardaki

fonksiyonun degerleri, aranilan integralin bulunmasinda kullanilir[EKLER].

Ortalama yonteminde oncelikle, verilen bir olasilik yogunlugu ile fonksiyonun
tanimli oldugu X-koordinatinda noktalar segilir, ve bu rasgele secilen noktalardaki
fonksiyonun degeri hesaplanip, bu degerlerin ortalama degeri ile integral degerine

ulagilmaya caligilir.

Monte Carlo ortalama ydnteminde amag, ilgilenilen aralikta fonksiyonun ortalama
degerini bulmak ve bulunan bu ortalama degerini integralin alindigi araligin

biiyiikliigii ile ¢arparak, integral degerine ulagsmaktir.

Burada yaptigimiz oOrnegimizde, secilen olasilik yogunluk fonksiyonu, verilen
aralikta diizglin dagilimh bir olasilik yogunluk fonksiyonudur. Bu yontemin ileri
uygulamalarinda, bu olasilik yogunluk fonksiyonu, fonksiyonun hizli degisimlerini
1yi takip edip, yakalayabilmesi acisindan integrali alinmak istenen fonksiyona uygun
olarak secilmektedir. Bu ise, gergekte degerleri bilinmeyen fonksiyonlarda, bir

olasilik yogunluk kestirimi yapma gerekliligini getirmektedir.

fix

Sekil 4.4 Rasgele x noktalarina karsilik diisen fonksiyon degerleri

Yine reddetme yonteminde degerini bulmakta kullandigimiz ¢eyrek birim daireyi
ele alalim. Burada reddetme yonteminden farkli olarak, sadece x-ekseninden rasgele

secim yaparak, bxrnoktalarinda,
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y =4/1- %2 (4.6)

Fonksiyonumuzuiy-degerlerini yani f(x) degerlerini hesaplayalim.

Uretilen her x degeri icin hesaplanan fonksiyonun ortalamasinin, fonksiyonun
ilgilendigimiz araliktaki ortalamasi oldugunu varsayip, bu elde edilen fox degerini
aralik biiyiikliigimiiz (b-a) = 1-0 degeri ile garparsak, integral degerimize ulagmis

oluruz.

I=Tsa=1, *bal =f,,

- =N

fII‘I

Sekil 4.5 Ortalama degeri yonteminde fo; degeri ile integralin hesaplanmasi

Segilen her noktaya iliskin hesaplanan f(x) degerlerinin hesaplanmasi ve bulunan bu
degerlerin ortalamasinin alinmasi sonucundaki deger bize fonksiyonun integrali

alinan bolgedeki ortalamasini verecektir.

Tablo 4.2 Ortalama yontemi ile elde edilen sonugclar

1 Gruptaki| 1 Grupigin 11| mden Sapma%| 100 grup igm| Ttden Sapma%

Ornek Sayisi

10 3.08693361 -1.73985410 3.18355846 1.33581042
20 3.41983771 8.85681248 3.13125420 -0.32908610
50 3.20412779 1.99055231 3.15607119 0.46086320
100 3.14914179 0.24029364 3.13762736 -0.12622190
500 3.13409901 -0.23853296 3.14176583 0.00550964
1 000 3.11435342 -0.86705452 3.14194894 0.01133811
5000 3.12836456 -0.42106599 3.14182043 0.00724758
10 000 3.15522981 0.43408129 3.14157581 -0.00053882
100 000 3.13978648 -0.05749501 3.14159203 -0.00002276
1 000 000 3.14149690 -0.00305081 3.14159465 0.00006071
10 000 000 3.14158750 -0.00016696 3.14159703 0.0001366d0

57



Tablodan da goriilebilecegi gibi, Ornek sayisini arttirmamiza ragmen hata
sapmamizda 6nemli bir diislis meydana gelmemistir. Bunun sebebi, 6rnegimizin tek

boyutlu bir integral olmasindan kaynaklanmaktadir.
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Sekil 4.6 Ortalama yontemi ile elde edilen sonuglar

Yukaridaki sekilden de goriilebilecegi gibi, ortalama yontemindeki Tlye yaklasim,
reddetme yonteminden oldukg¢a iyidir. Ayni Ornek sayilari icin, ortalama yontemi

daha 1yi sonuglar vermistir ve sonuglarin sagilimi reddetmeye gore oldukga azdir.

4.1.3 Kontrol degiskeni yonteminin uygulanisi ve sonuclari

Kontrol degiskeni yonteminde, integrali alinmak istenen fonksiyona, integral ¢oziimii
bilinen ve de aradigimiz fonksiyona olduk¢a benzer ve onu iyi takip eden bir
fonksiyonla yaklasilmaya calisilir. Boylelikle secilen her noktada, iki fonksiyonun

farkindan integral degerleri arasindaki fark kestirilmeye calisilir ve elde edilen deger,
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bilinen fonksiyonun integral degerine eklenerek aranilan integral degerine

ulagilir[EKLER].

0 02 04 06 08 1

Sekil 4.7 Integralini bulmak istedigimiz v1— X% ve yaklagim i¢in kullanacagimiz (1%
fonksiyonlari

Ormegimiz i¢in, ¢oziimii bilenen, y=1-X denklemini secelim. Bu denklemin

ilgilendigimiz (0,1) araliginda integrali alindiginda elde edilen sonug ise,

HBb-2H-3-075 4.7)
00 40 4

'tir. Sekilden de goriilebilecegi gibi, ¢ceyrek dairenin egrisini oldukca iyi takip eden
bir fonksiyondur.

Kontrol Degiskeni yonteminde de, ortalama yonteminde oldugu gibi, sadece X-
koordinat diizleminde rasgele nokta se¢imi yapilir. Bu secilen rasgele X-noktasinda
her iki fonksiyonun da degeri hesaplanir ve bu iki fonksiyonun birbirinden farki
bulunur. Bu fark miktari, segilen her X-degeri icin hesaplanarak bulunur. Islemin
sonunda bu farklarin ortalamasi alinarak ve tipki ortalama yonteminde oldugu gibi,
aralik bliyiikligii olan (b-a) = 1ile carpilir. Boylelikle, aradigimiz alan ile degerini

bilinen fonksiyonun alani arasindaki alan farkin1 yani fark integralinin degeri
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bulunur. Bu fark, degeri bilinen fonksiyonun integral degerine eklenerek, bulmay1

istedigimiz integral degerine yaklasilir.

Bu yontemde, elde edilen integral degeri, en kotii kestirimde bile (az sayida 6rnek
alinmas1 veya rasgele noktalarin se¢iminde kullanilan olasilik yogunluk
fonksiyonunun idealden uzak olmasi durumunda), kontrol fonksiyonun integral
degerine oldukca yakin bir deger alacagindan dolayi, yaklasimimiz oldukga hizli ve
az sayida nokta ile gerceklesebilir durumdadir. Boylelikle her nokta igin kestirim
yapmak zorunda kalmayarak, en kotii tahmini yapsak bile, tanimsiz noktalar i¢in
kontrol fonksiyonumuzun degerlerini atamis oluruz. Bu da kestirimizin dogru

degerlere ulasma hizini oldukga arttiracaktir.
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Sekil 4.8 Kontrol degiskeni yontemi ile elde edilen sonuglar
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Kontrol fonksiyonu kullanmanin avantaji, sekilden de acik bir sekilde goriilmektedir.
Tt degerinden sagilhim, 100 6rnekte bile, reddetme ve ortalama yontemlerine gore

oldukg¢a azdir ve oldukga 1yi bir yaklagim gostermektedir.

Tablo 4.3 Kontrol fonksiyonu yéntemi ile elde edilen sonuclar

1Gruptaki | 1 Grupicin 1| Tden Sapma%| 100 grup icirt | Ttden Sapma%
Ornek Sayist

10 3.18462658 1.36980963 3.13206005 -0.30343494
20 3.06250596 -2.51741028 3.14630818 0.15009719
50 3.14506197 0.11042897 3.13627720 -0.16919896
100 3.12197566 -0.62443107 3.14052820 -0.03388532
500 3.14595604 0.13888811 3.14172602 0.00424230
1 000 3.14232850 0.02341995 3.14143682 -0.00496327Y
5000 3.14549780 0.12430185 3.14157581 -0.00053882
10 000 3.13835812 -0.10296130 3.14157987 -0.00040981
100 000 3.14179111 0.00631413 3.14159465 0.00006071
1 000 000 3.14160132 0.00027320 3.14159274 0.0000000d
10 000 000 3.14159393 0.00003794 3.14159298 0.00000758

Tablodaki elde edilen degerleri digerleri ile karsilagtirdigimizda da sayisal
sonuglarin ger¢ek degere ne kadar hizli yakinsadigini goriiyoruz. Az sayida ornek
alinmasina ragmen, reddetme ve ortalama yontemlerine gore oldukca hizli bir

yaklagim gdstermistir ve aranilan degere oldukga yakin sonuglar vermistir.

Bu yontemin en temel zorlugu, integralini bulmaya ¢alistigimiz fonksiyonu iyi takip
eden bir fonksiyon bulmaktir. Kestirimci fonksiyonun iyi tahmin edilemedigi
durumlarda, bu yontem bize yarardan ¢ok zarar getirecektir. Bu yanls kestirim
nedeniyle, yaklasim hizzimiz oldukca diisecek, dogru sonuca ulagsmak i¢in ¢ok sayida
ornek almamiz gerekecek ve sonuglar gercek degerden uzak ¢ikarak, oldukga biiyiik

hatalara neden olabilecektir.

Yontemin ikinci can alict noktast ise, olasilik yogunluk fonksiyonun se¢imidir. Bu
yontemde, olasilik yogunluk fonksiyonun se¢imi, diger yontemlerde oldugu gibi,
integrali aranilan fonksiyonun hizli degisimlerini takip edip, bu degisimlerde daha
fazla nokta segecek sekilde degildir. Kestirim fonksiyonu ile integrali bulunulmaya
caligilan fonksiyon arasindaki farklarin iyi yakalabilmesi gerektiginden, olasilik

yogunluk fonksiyonunun se¢imi bu fark fonksiyonuna dayanilarak yapilacaktir.
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Bu yontem, integrali bulunacak fonksiyonun yaklasik olarak bilinmesi ve de bu
fonksiyona olduk¢a yakin ve integrali bilinen bir fonksiyon oldugunda oldukga
avantajlidir. Diger yontemlere gore de oldukc¢a hizli yaklagsmaktadir. Kestirim
fonksiyonunun belirlenmesi olduk¢a hassas bir kriter oldugundan, hatali fonksiyon
secilmesi durumunda, yontem avantajlarini gosteremeyerek, diger yontemlerin bile

daha verimsiz hale doniisebilecektir.

4.1.4 Onem drnekleme yonteminin uygulanisi ve sonuglari

Bu yontem, kontrol degiskeni yontemine oldukga benzer bir yontemdir. Fakat burada
aranilan f(X) fonksiyonunun hakkinda kullanilan yardimci fonksiyonun etkisi,

toplamsal olarak degil carpimsal olaraktir.

Onem 6rneklemede amag, fonksiyonun karakteristigini belirleyebilecek ve fonksiyon
hakkinda en ¢ok bilgi alinabilecek bolgelerden drnek alarak, bilgiye hizli erismektir
Boylelikle gereksiz nokta se¢imlerinden kaginilarak, vakit kaybi azaltilir ve islem

zamaninin azaltilmasi saglanir.

Bu yontemde, kontrol degiskeni yonteminde integrali alinmak istenen fonksiyona
benzer fonksiyon olarak kullanilan, h(x) yaklasim fonksiyonu o&rneklemede
kullanilacak olasilik yogunluk fonksiyonunun elde edilmesinde kullanilir. Bu
nedenle, f(x) fonksiyonumuza ne kadar yakin bir h(x) yaklasim fonksiyonu

kullanirsak, o kadar iyi sonuglar elde ederiz.

En iyi sonug, h(x)=f(x) oldugu durumda elde edilir. f(x)=+1-x* olarak
bildigimizden dolayi, bu fonksiyona uygun olarak olasilik yogunluk fonksiyonunu

elde edereld) varyansli sonuca ulasmamiz daha kolaydir.

Su bir gergektir ki, onem 6rnekleme yontemi hi¢cbir zaman kontrol degiskeni yontemi
kadar iy1 sonu¢ veren bir yontem degildir. Ama uygun fonksiyon secilmesi

durumunda, reddetme ve ortalama yontemlerinden daha iyi sonuglar verir.

Simdi degisik yaklasim fonksiyonlari kullanarak, f(x) fonksiyonumuzun integral

degerini hesaplamaya ¢alisalim.
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4.1.4.1Lineer yaklasim fonksiyonu ile

[lk olarak, lineer bir yaklagim fonksiyonu olan,

h(x) =1-x (4.8)

fonksiyonunu kullanalim.

Sekilden de goriilebilecegi gibi, yaklagim fonksiyonumuz integrali aranilan
fonksiyonda oldukc¢a farklidir. Bu farklilik, sonugta bulunacak integral degerine ve

olusacak hataya da etkiyecektir.
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Sekil 4.9 v/1— X fonksiyonu ve(1-X) yaklasim fonksiyonu

Bu (1-x) yaklasim fonksiyonu kullanarak, integral almak istedigimiz bdlgede,

yaklagim fonksiyonumuza benzer bir olasilik yogunluk fonksiyonu olusturalim.

) _hG)_ 1-x _ 1-x _1=x_,,_, (4.9)

P(X) = 5

h Ih p X2 E
! (X)dx !'(1— x)dx %_2 5

0o

Bu olasilik yogunluk fonksiyonunu kullanarak, integral degerimizi bulmak igin

rasgele say1 liretecimizde kullanacagimiz, olasilik dagilim fonksiyonunu elde edelim,

63



E=F(X) :i’p(x)dx:j’Z(l—x)dx: 2X = X? (4.10)

Bu, F(x) olasilik dagilim fonksiyonunun tersini alirsak,
x=1-,1-¢& (4.11)

denklemini elde ederiz. Bu denklem doniisiimii sayesinde, rasgele say1 iireteci ile
program sayesind€0, 1) arasinda iirettigimiz diizglin dagilimli sayilardan, f(x)
fonksiyonumuzun integralini almamizi1 daha kolaylastiracak, uygun bir olasilik

yogunluguna sahip yeni bir say1 grubu elde edebiliriz.

00 ORNEK ICIN
5.60

1
*dhdek |
1

- 0.000 ORNEK ICIN
] ——— 1.000.000 ORNEK ICIN
! |

3.40 —

- i

L —

o —

L

() -

o 1

z 3.20

i i

= 1

Lu —

L —

()]

O 1

|_lJ —

3.00 —

280 \\IIIII\I\\\\\\IIII|I\I\\\\II|IIIIII\\\\\IIIIIII\\\\\\I

0.00 20.00 40.00 60.00 30.00 100.00

N. ORNEK TEKRARI
Sekil 4.100nem 6rnekleme yontemi ve (1-x) yardimer fonksiyonu ile elde edilen sonuglar

Bu yaklasim fonksiyonu ile Onem &rnekleme ile elde edilen T degerleri sekilde
gorulmektedir.
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Secilen yardimci fonksiyonun ve bu fonksiyondan elde edilen olasilik yogunluk

fonksiyonumuzunf(x) fonksiyonumuza ¢ok uygun olmamasindan dolayi iyi sonuglar

elde edilememistir.

Tablo 4.4 Onem 6rnekleme yontemi(ex) yardimei fonksiyonu ile elde edilen sonuglar

B

D

1

D

L

D

D

D

1Gruptaki | 1 Grupicin 1t | mden Sapma%| 100 grup igirt | Tden Sapma%
Ornek Sayisi
10 3.06208181 -2.53091145 3.05633211 -2.7139301
20 2.92867303 -6.77744484 3.08802176 -1.7052173
50 3.17870522 1.18132675 3.11688876 -0.78635204
100 3.00752306 -4.26757050 3.12095523 -0.6569123
500 3.22366333 2.61238790 3.14684200 0.16708919
1 000 3.07559204 -2.10086751 3.14377379 0.06942507
5000 3.13621354 -0.17122525 3.14124751 -0.0109890
10 000 3.13674331 -0.15436228 3.14153194 -0.0019352
100 000 3.14064121 -0.03028809 3.14151454 -0.0024892
1 000 000 3.14174390 0.00481148 3.14150143 -0.0029066
10 000 000 3.14151955 -0.00232985 3.14150310 -0.0028535

D

Bu

neden olmustur. Bir nevi, yontemin biitiin avantajlarin1 ortadan kaldirmis, ve hatta bu

uyumsuzluk elde edilen sonuglarin, aranilan degerden oldukga

avantajlar1 dezavantaj haline doniistiirmiistiir.

4.1.4.2Ustel yaklasim fonksiyonu ile

uzak ¢ikmasina

1] 02 04 06
Sekil 4.11 y1— X* fonksiyonu ve€ * yaklasim fonksiyonu
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Ikinci olarak, fonksiyonumuza daha benzer bir olasilik yogunluk fonksiyonu ele

alalim,

h(x) =

5.25

ELDE EDILEN PI DEGERLERI

5.05

2.95

e— X

N A T N S I A O N O O B I

by
b
[

Feh—h—h—k

1
1
1

(4.12)
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Sekil 4.12 Onem érnekleme yéntemi @ yardime1 fonksiyonu ile elde edilen sonuglar

Bu yaklagim fonksiyonumuzun olasilik yogunluk fonksiyonu,

p(x) =

—x o

_ e

X+1

e
1

Ie‘xdx €,
0

T =

'dir ve olasilik dagilim fonksiyonu ise,
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' =ei_1(1—e'X) (4.14)

a _cefe e (L
E=F0 = [iin= e

ve bu fonksiyonumuzun ters fonksiyonu ise,

x=-inA-71ch (4.15)
0 e

‘dir.

Gorildiugi gibi, lineer yaklasim fonksiyonuyla yapilan islemden daha verimli bir

sonug elde edilmistirf EKLER].

Tablo 4.5 Onem 6rnekleme yontemi @* yardimei fonksiyonu ile elde edilen sonuglar

1Gruptaki | 1 Grupicin 1| Tden Sapma%| 100 grup icirt | Ttden Sapma%
Ornek Sayist

10 3.30075264 5.06621695 3.16542506 0.75860631
20 3.08088636 -1.93234396 3.14021087 -0.04398641
50 3.21414971 2.30956006 3.14401650 0.07715077
100 3.11437988 -0.86621213 3.13776469 -0.12185057
500 3.16363645 0.70167291 3.14084148 -0.02391325
1 000 3.10858178 -1.05077147 3.14195824 0.01163404
5000 3.13904572 -0.08107434 3.14133048 -0.00834800
10 000 3.14711308 0.17571799 3.14115143 -0.01404742
100 000 3.14089561 -0.02219052 3.14136410 -0.00727794
1 000 000 3.14149642 -0.00306599 3.14147067 -0.00388561
10 000 000 3.22401690 2.62364244 3.22401428 2.62355900

Aradigimiz fonksiyonun seklinin, yakinsamakta kullandigimiz iistel fonksiyonun

sekline az da olsa benzerligi bile erisimimizi olumlu yonde etkilemistir.

4.1.4.3(1-X3 ) Yaklasim fonksiyonu ile

Simdi kontrol yonteminde kullandigimiz, fonksiyonumuza oldukga benzer olan h(X)

= (1-X3) fonksiyonu, Onem 6rnekleme ydnteminde ele alalim.

Bu fonksyonun (0, 1) araliginda integrali,

67



X4

1%&) 9f- 2 (4.16)

= j'(l— x*)dx = %

dir. Bu fonksiyonumuza iligkin olan olasilik yogunluk fonksiyonumuz ise,

( ) - h(X) _ X3)

© 3 (4.17)

'tlir. Buradan da, olasilik dagilm fonksiyonunu elde edersek,

E=F(x) = ;p(x>dx ; - )i -—% % (4.18)

denklemini elde ederiz.
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Sekil 4.13Integralini almak istedigimiz v1— x? fon ksiyonu,(1-X°) yardimet fonksiyonu ve bu
yardimci fonksiyondan elde edilen olasilik dagihim fonksiyonu

Fakat bu denklemin analitik olarak bir ters fonksiyonu yoktur. Bu nedenle, ters

fonksiyonun elde edilmesi i¢in, tablo yonteminden yararlanilmastir.

Tablo yontemindex-ekseni(0,1) araliginda pargalara boliiniir ve her X degeri igin

olasilik yogunluk fonksiyonun integrali alinir, yani secilen her X degeri (4.18)
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denkleminde yerine konularak, belixler i¢in F(x) degerleri hesaplanir. Boylelikle,
verilen olasilik dagilim fonksiyonu F(X)'in, raslantisal degisken X, ters yontemin

u=F(x) i¢in ¢6zUmU olarx ve u degerleri bir tablo seklinde olusturulur.
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Sekil 4.140lasilik dagilim fonksiyonu F (X) = § %( - 7 'in ters fonksiyonun grafigi

u=F(x)'den x=F(u) yazilabileceginden, olusturulan tablodan bu kez de segilen u

degerleri igine kars1 diisen X degerleri okutulabilir.

Olasilik yogunluk fonksiyonu p(X) olan, rasgele x degerleri iiretmek i¢in, (O, 1)
arasinda diizgiin dagilan U'larin degerleri (=F(X))'den yola ¢ikarak, bu degerlere kars1

diisen X'ler bulunur ve boylelikle istenilen dagilim olusturulur.

Yardimci fonksiyon yardimiyla elde edilen olasilik yogunluguna uygun olan bu X

sayilari,

1af(x)_ 1 o1 -
sz NZ4 —)gs _N,zl4 - X (4-19)

denkleminde yerine konularak integral degeri hesaplanir.
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Sekil 4.15 Onem érnekleme yontemi \(fb— X3) yardimer fonksiyonu ile elde edilen sonuglar

Bu hesaplamada elde edilen sonug, rasgelelik secilen noktalarla islem yapildigindan,
kontrol degiseni kadar verimli degildir. Ama yine de reddetme ve ortalama

yonteminden daha hizli yaklagim yapan bir yontemdir.

Tablo 4.6 Onem 6rnekleme yontemi (k— X3) yardimci fonksiyonu ile elde edilen sonuglar

1Gruptaki | 1 Grupicin 1| Tden Sapma%| 100 grup icirt | Ttden Sapma%

Ornek Sayist

10 3.05503726 -2.75514650 3.10493135 -1.16696811
20 3.05573130 -2.73305464 3.13786983 -0.11850378
50 3.05963111 -2.60891962 3.13272285 -0.28233725
100 3.17201304 0.96830833 3.15510702 0.43017289
500 3.13199902 -0.30537775 3.14054418 -0.03337685
1 000 3.18919563 1.51524711 3.14083982 -0.02396637
5000 3.15349126 0.37874156 3.14145899 -0.00425748
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4.1.4.4Fonksiyon secimlerinin karsilastirilmasi

Onem ornekleme yonteminde segilecek fonkiyonun One$akil 4.16'dan da
goriilebilecegi gibi oldukca fazladir. Segilen fonksiyon ne kadar uygunsa, istenen
degere erisim hizi o kadar yiiksek olacaktir. (1-x) lineer fonksiyonu ile yapilan
yaklagimda gercek degerden sapmalar oldukga fazla iken, fonksiyonu daha iyi takip
eden(l-x3) ve €” fonksiyonlarinm sapma miktarlan diisiik ve erisim hizlar1 oldukca

iyidir.

— {1-x)
—_— l-x"'}
e=X

[ 8]
wn
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10" 0o 10° 10°
Alman Omek Sayis1

Sekil 4.160nem drnekleme yonteminde ¢esitli fonksiyonlar i¢in sapma miktarlar

(1-x%) fonksiyonu ﬁ fonksiyonuna daha uyumlu bir fonksiyon olmasina
ragmen €* fonksiyonundan daha kotii sonuglar vermistir. Bunun nedeni (1-X)
fonksiyonun ters fonksiyonunun bulunamayip, tablo yontemi ile ters fonksiyon
degerlerine erisilmeye c¢alisilmasindandir. Kullanilan tabloda da, erisimi
hizlandirmak amaci ile, adim sayisinin biiyiik tutulmast nedeniyle, bu fonkiyonunun,
fonksiyonumuza uyumlulugunun etkileri kaybedilmistir. Buradan da anlagilacagi
gibi, ters fonksiyonu bulanan fonksiyonlarla islem yapmak oldukca avantajli ve de
verimlidir. Ters fonksiyonu bulunamayan fonksiyonlarin kullaniminda ise, tablodan
okumada kaybedilen vakit nedeniyle ve de olusturulan tablonun ¢oziiniirliigiiniin iyi

yapilamamasindan dolay1 olumsuzluluklar1 oldukga fazladir.
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Onem &rnekleme yonteminin dezavantaji, olasilik yogunluk dolayisiyla yaklasim
fonksiyonunun belirlenmesinin zorlugudur. Ayrica, yontemin uygulanmasinda,
olasilik dagilim fonksiyonunun, ters fonksiyonunun bulunmasi gerektiginden, uygun
bir fonksiyon bulunsa dahi ters fonksiyonu elde edilemediginde Sekil 4.16'da
goriilebilecegi gibi yontem kullanighlhigini  kaybedebilir. Ters fonksiyonun
bulunamadig1 durumlarda kullanilan tablo yontemi de oldukga vakit ve de islem alan

bir yol oldugundan maliyeti oldukca yiiksek olabilir.

Hatali olasilik yogunluk fonksiyonunun segilmesi durumunda ise, fonksiyonun
karakteristigi tam olarak takip edilemediginden dolayi, integral degerine yanlis bir

sekilde yakinsanmaya ¢aligilacaktir ve istenilen sonuglar elde edilemeyecektir.

Bu yontem, bir verinin olasilik yogunluk fonksiyonunun, yaklasik olarak bilinmesi
durumda oldukg¢a avantajlidir. Haberlesme verilerinin bir ¢ogu hakkinda elde edilen
bilgiler, daha ¢ok olasiliksal temelli oldugundan, bu tiir verilerin islenmesinde

oldukga biiyiik kolayliklar saglar.

4.2  Simpson Yontemi

Analitik integral alma yontemlerinden en 6énemlilerinden biri olan Simpson yontemi

ile v/1-x? integralini ¢ozmek istedigimizde asagidaki sonuglari elde ederiz. Simpson

yonteminde integral alma islemi fonksiyonun esit araliklara sahip adimlara boliinerek

yapilmaktadir[EKLER].

Tablo 4.7 Simpson ydntemi ile elde edilen sonuglar

Ornek Sayisi Bulunan Tt rtden Sapma%
9 3.12118912 -0.64946747

19 3.13556457 -0.19188277

49 3.14021039 -0.04400159

99 3.14111900 -0.01507953
499 3.14155126 -0.00132050
999 3.14157820 -0.00046293

4 999 3.14159131 -0.00004553

9 999 3.14159226 -0.00001517
99 999 3.14159274 0.00000000
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Belirli adimlarda fonksiyonun aldig1 degerler sabit oldugundan islem ne kadar tekrar
edilirse edilsin, adim sayis1 sabit oldugu siirece ayn1 degerlere erisilecektir. Integral
degerlerinin hesaplamasinda basit bir Simpson dongiisii kullanilmistir. Bu yontemde
rasgele sayr iliretme islemi olmadigindan ve de I-boyutlu islem yapildigindan

oldukga hizl1 bir sekilde sonuglara erisilmistir.

Yukaridaki tablodan goriildiigii gibi elde edilen degerler, T degerine oldukca
yakindir. Adim sayis1 arttirildik¢a, oldukca lineer bir davranisla hata miktar1 azalip,

aranilan Ttdegerine ilgilenilen tam degeriyle yaklasilmistir.

4.3 Karsilastirma

Bu tezde ele aldigimiz Simpson ve Monte Carlo yontemlerinin verimliligini 1-
boyutlu integral denkelmeinin ¢6ziimii karsilastirdigimizda, Simpson yonteminde
elde edilen degerlerin T'ye yakinsamasinda bir dogrusallik varken, Monte Carlo
yontemleri ile elde edilen sonuclarda rasgele sayilar ve olasiliksal dagilimlar

kullanildigindan bir diizensizlik vardir.
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—  Ortalama Yontemi
Kontrol Yintemi
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—  Simpson Ydntemi i
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Sekil 4.17Yontemlerin Sapmalarinin Karsilastiriimasi
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Sekil 4.17de de goriilebilcegi gibi, reddetme yontemi genel olarak en fazla hatanin
meydana geldigi yontemdir. Bu da daha dncede bahsedildigi gibi, tamamen segilen

alan ve rasgele say1 iiretecinin diizgiin dagilip dagilmamasi ile ilgilidir.

Ortalama yonteminde, rasgele secilen noktalarda, dogrudan fonksiyonun analitik
ifadesinden elde edilen degerler kullanildigindan, Simpson yoOntemine benzer
sonuclar beklenebilirdi. Fakat, rasgele say:1 iiretecinin ideal bir iirete¢ olmayip,
diizglin dagilimli olasilik yogunluk fonksiyonuna uygun sayilar iiretememesinden
ileri gelmektedir. Olusan bu hata ve sapmalardan dolay1 ¢ok verimli bir sonug elde
edilemistir. Ayrica, secilen diizgiin dagilimli olasilik yogunluk fonksiyonu
karakteristikli rasgele say1 iireteci fonksiyonun tam olarak degisimini takip
edebilecek nitelikte olmadigindan aranilan integral degerine iyi bir sekilde

yakinsanamamigtir.

Onem o6rnekleme ydnteminde secilen yardimci fonksiyonla ilgili olarak, sonuca
yakisama hizimizda degismektedir. Islemler 1-boyutta yapildigindan yardimci
fonksiyonlarin ve secilen olasilik dagilim fonksiyonlarinin verimliligi tam olarak

gorulememektedir.

Kontrol degiskeni yonteminde elde edilen sonuglar, secilen yardimci fonksiyonun
aranilan integral fonksiyonuna yakin olmasi nedeniyle, oldukc¢a iyi sonuglar

vermistir.

Simpson yonteminde is& degerine adim arttik¢a dogrusal bir yakinsama meydana

gelmistir.

Bu elde edilen sonuglar, beklenen sonuglardir. Analitik yontemlerden Simpson
yonteminin  1-boyutlu integraller i¢in hata yakinsamasi, Monte Carlo
yontemininkinden oldukga iyidir. Buna ek olarak Monte Carlo yonteminde kullanilan
rasgele {lireteclerin idealsizligi ve tam olarak ideal olasilik yogunluk ve yardimci

fonksiyonlar secilemediginden beklenen disinda da sapmalar meydana gelmistir.
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4.4  Onceden Uretilmis Ornek Grubunun Degisik Biiyiikliiklerde Ornek

Grubuna Boliinerek Incelenmesi

Bu incelememizde ise, dnceden iiretilmis Orneklerin degisik biiyiikliikteki gruplar
halinde islenip, istenen ger¢ek deger etrafinda ne kadar sagildigi incelenmistir.
Isleme sokulan toplam &rnek sayist sabit oldugundan, her farkli biiyiikliikteki

grubun sonug olarak ulastig1 Ttdegeri aynidir.

Hesaplamalarimizda diizgiin olasilik yogunlugu ile iiretilmis sabit sayidaki ornekler
kullanilmaktadir ve bu oOrneklerden farkli sayilarda alinarak gruplar olusturulup,
isleme sokulmustur. Bu gruptaki rasgele 6rnekler, bu 6rnek degerlerinde fonksiyonun
aldig1 ortalama degerlerinin hesaplanmasi ile yani 4.1.2 bdliuminde 6rnek olarak

incelenen Monte Carlomun ortalama yontemi kullanilarak integral hesabinda

kullanilmislardir.
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Sekil 4.18Toplam 5000 6rnegin; 50, 100 ve 500'lii gruplar halinde isleme sokularak her grup igin elde
edilenttdegerlerinin, gercek Ttdegeri etrafinda sagilimi
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Sekil 4.18de 6nceden iiretilmis 5000 6rnek,50, 100, 200ve 50010 gruplar halinde
isleme sokulmustur. Buradan da goriilebilecegi gibi, bir seferde isleme sokulan
eleman sayis1 az olan gruplarin, her grup degeri icin elde edilen Tt degeri oldukca
fazla bir sa¢ilima ugramistir. Sonu¢ olarak toplamda isleme sokulan 6rnek sayisi

5000ile sabit oldugundan dolay1, her grup i¢in ulasilan Ttdegeri aynidir.

Toplam 10.000 6rnek sayist i¢in, her grup i¢in elde edilen Tt sayilarinin dagilimini
incelemek istegimizde, bu dagilim Sekil 4.19den de goriilebilecegi gibi Gauss

dagilimi 6zelligi gostermektedir.
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Sekil 4.19Uretilen 10.000 &rnegin, 100, 200, 500 ve 1000'li gruplar halinde incelenmesi sonucu elde
edilenttdegerlerinin sayisal dagilimi

Sekilde farkli biiyiiklikteki gruplarin dagilimi icin keskin bir siir net olarak
goriilememektedir. Ele aldigimiz 6rnek sayisini arttirdigimizda ise, Sekil 4.20'dan ve
Sekil 4.21dan goriilebilecegi gibi, her 6rnek grubu i¢in elde ettigimiz dagilim ayri
ayr1 net bir sekilde goriilebilmektedir. Eleman sayisim yiiksek tuttugumuz gruplarin,
beklendigi gibi, gercek TU degeri etrafindaki sagilimi oldukca kiigiiktiir. Ornek

sayisini kiigiik tutugumuzda ise, sagilim yayinin oldukca biiylik oldugu agikca

gorulebilmektedir.
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Sekil 4.20Uretilen 100.000 &rnegin 100, 200, 500 ve 1000'li gruplar halinde incelenmesi sonucu elde
edilenttdegerlerinin sayisal dagilimi

100.000 6rnek icin yapilan incelemede elde edilen 11 degerlerinin, gercek deger
etrafindaki sagilimmi gauss dagilimina benzerligi oldukca 1yi bir sekilde
goriilmektedir. Ele alinan 6rnek sayisi arttikca elde edilen Tye yaklasarak oldukca

kiigiik sagilimlar gostermektedirler.
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ELDE EDILEN P DEGERLERI

Sekil 4.21 Uretilen 1.000.000 6rnegin; 100, 200, 500 ve 1000'i gruplar halinde incelenmesi sonucu
elde edilermtdegerlerinin sayisal dagilimi

Sekil 4.21dan da goriildiigii tizere, 1.000.0006rnek ic¢in yapilan incelemede, her

farkli biiytikliikteki grubun dagiliminin grafigi olduk¢a ayridir ve dagilim

parametreleri sekilden de elde edilebilecek kadar agiktir. Secilen tahmini degerler
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normal dagilmistir ve olusturulan gruptaki nokta sayisi ne kadar ¢oksa, elde edilen
sonuglarin standart sapmasi da o kadar kiigiilecektir. Sekil 4.21'da,1000 6rnek icin
meydana gelen standart sapma oldukca kicuktirl@@ 200 ve 5006rnekli

gruplarin standart sapmalarindan rahatlikla ayirtedilebilir bir haldedir.

4.5  Monte Carlo Yonteminin Cok-Boyutlu Bir Probleme Uygulanmasi:

Hiper Kirenin Hacmi

Monte Carlo Yonteminin boyuttan bagimsiz bir yontem oldugunu 6nceki
boliimlerimizde belirtmistik. Simdi Monte Carlo Yontemi’nin bu 6zelligini
anlayabilmek igin, yontemid-boyutlu bir hiper kiirenin hacminin bulunmasina

uygulayalim. d-boyutlu uzayda bir kiirenin hacmi asagidaki ifade ile verilir[24];

d
2
1= [[[dx dx.dx, =;|T—rd (4.20)
Xf+X2+...+Xzsr2 F(E + 1)

Gamma fonksiyonlar1 arasindaki,

M(z+1) =2 (2) (4.21)

227 (M (z + %) =./nT (22) (4.22)
indirgeme bagintilarimin[25] kullanilmasiyla her d-boyutu icin kidrenin hacmi

kolayca belirlenebilir.

Boylelikle Gamma fonksiyonlar1 yardimiyla, bulunmasi oldukca zor olan, ¢ok-kath

kiirelerin hacminin degerine ¢ok kolaylikla erigebiliriz.

Bu alt bélumded-boyutlu hiper kirenin hacnidbenklem 4.2®agintisinin sagindaki
integral ifadesinin Monte Carlo yontemi ile hesaplar ve elde edilecek sonuglar, kire

hacminin gercek degerleri de karsilastirilacaktir.

Bu esitliklere gore, ¢ok-katli kiirelerin hacim esitlikleri,
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Tablo 4 8 Hiper-kiirenin boyut sayisina gére hacim degerleri

Boyut Sayisi Hacim r=0.5 i¢in hacim
2 T2 0.785398185
3 4 0.52359879
—7T
3
4 T2 . 0.308425158
—r
2
5 64 , 0.164493412
—nr
120
6 T . 0.0807455182
—Tr
6
7 16 5 - 0.0369122364
—TJTr
105
8 P . 0.0158543456
—TI
24
9 32 . 0.00644240109
—TJr
945
10 m° 10 0.00249039498
— T
120
11 2048 5,11 0.000919972779
332640

gibidir.

d=2 i¢gin, Sekil 4.22deki gibi normal bir daire seklinde olan hiper kiiremiz,

o

VA/TEARRDN

T
LT

NS

g el i

Sekil 4.22 2-boyutlu hiper-kiire

d=3 i¢in de Sekil 4.23"deki gibi bir kiireye doniisecektir.
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Sekil 4.23 Degisik agilarda 3-boyutlu hiper-kiirenin goriiniisti

Kiiremizin denklemsel bir ifadesi belirli ve tanimli oldugu alan belirli oldugundan
Monte Carlo reddetme yontemini uygulamak i¢in elverisli olacaktir. Ayrica reddetme
yonteminin kolay uygulanabilir ve hizli cevap verebilen bir yontem olmasi nedeniyle

problemimize bu yontemi uygulayalim.

r=0.5’yi  olarak belirleyelim. Problemimiz  bilgisayar algoritmamiz su

sekildedir[EKLER],

+ Oncelikle hiper kiiremizin, integralinin almmasi istenen bélgedeki sinirlari
belirlenmelidir.r=0.5 olarak belirlendiginden, ayrit uzunlugu 1 olan ve kiremizi

icine alan birim kiip ile smirlarimizi olusturalim. Reddetme yonteminde,

kiremizin merkezini orjinde kabul edersek, fonksiyonu da icine alan bu

siirlandiriimis bolge, integralin alinmak istenildigi (Xmin,Xmax= (-0.5,0.5)aralig1

olacaktir.

» Taranacak bolge bu sekilde belirlendikten sonra bolge, (-Xmin,Xmax)=(-0.5,0.5)

araliginda rasgele tiretilen her boyut icin bir tane X; degeri secilir.

2 2 2 o . 2 2 2 2 s . o . .
* X +X,+..+X, degeri hesaplanir ve x;+x,+..+X,<r i¢in saya¢ degerimiz 1

arttirilir.

» Sayac / Toplam Negerimiz bize integrali bulunmak istenen alan ile toplam alan

arasidaki orani verecektir.

Degisik sayida ornekler i¢in denedigimiz hacim hesabinda elde edilen baz1 sonuglar

tablo halinde ele alalim.

Tablo 49’de goriilebilecegi gibi, 5000 6rnek i¢in gercek integral degerinden sapma
miktarlart mutlak olarak yaklasik ayni seviyelerde kalmistir. Bu sonuglar, Monte

Carlo yonteminin boyuttan bagimsiz olmasimin temel bir sonucudur. Ornek sayisinin
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sabit olmasi nedeniyle integral degerleri degismis olsa bile genel olarak meydana

gelen hatada cok biiyiik bir degisiklik olmamistir.

Tablo 4 9 5000 6rnek alinmak iizere Hiper-kiirenin degisik boyutlar i¢in hacim degerleri

Boyut Sayisi Elde Edilen Hacim | Sapma Miktar (%)
2 0.78512388 -0.034925
3 0.52288389 -0.136535
4 0.30810004 -0.105411
5 0.16411999 -0.227014
6 0.08020999 -0.663226
7 0.03698799 0.205247
8 0.01570000 -0.973515
9 0.00643799 -0.0683319
10 0.00250200 0.466027
11 0.00091799 -0.214451

Elde edilen sonuc¢larda meydana gelen dalgalanmalarin nedeni ise, rasgele sayi

iretecinin ideal bir davranig gosterebilmesi i¢in daha ¢ok sayida 6rnek gerekmesi dir.

Tablo 4 10 5-boyutlu Hiper-kiirenin degisik 6rnek degerleri i¢in elde edilen hacim degerleri

Ornek Sayis Elde Edilen Hacim | Sapma Miktar1 (%)
10 0.16900003 2.739695
50 0.16640000 1.159067
100 0.16090003 -2.184516
500 0.16537999 0.538973
1.000 0.16428997 -0.123680
5.000 0.16411999 -0.227014
10.000 0.16389994 -0.360786

Tablo 4.10de de bir 6nceki tablodan farkli olarak, 5-boyutlu bir seklin integralinin
Monte Carlo reddetme yontemi ile degisik ornek sayilar i¢in elde edilen sonuglar
yer almaktadir. Dogal olarak, 6rnek sayisi arttikca, sapma miktarinda bir azalma
goriilmektedir. Sapmada olusan idealsizlikler ise, yontemin uygulanisi i¢in yeterli
sayida 0rnek alinmamasindan ve rasgele sayi tiretecimizin ideal bir davranig gosterip
dizgin (uniform) dagilimli bir  rasgele say1 iireteci gibi davranamasindan

kaynaklanmakdir.
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GERCEK INTEGRAL DEGERINDEN SAPMA MIKTARI (%)

ORNEK SAYISI

Sekil 4.24 Cok-boyutlu hiper kiirenin reddetme yontemi ile elde edilen integral degerinden sapma
miktarmin, degisik boyutlar i¢in boyut-sayisi sabit tutularak, alinan 6rnek sayisina gére
degisiminin verdigi sonuglar

Sekil 4.24 ve Sekil 4.25de boyut veya Ornek sayisi sabit tutularak elde edilen
sonuclar yer almaktadir. Bu sekilleri sira incelemek istersek, Sekil 4.24den diisiik
ornek sayilart i¢in, gergek integral degerinden sapma miktarlarimin oldukca fazla
oldugunu goriiriiz. Ornek sayis1 arttikca da sapma miktarlar;, boyuttan bagimsiz
olarak, bir seviyenin altinda kalmaktadir. Bunun nedeni de, alinan az sayidaki 6rnek
gruplart icin, liretecimizin diizglin dagilima sahip rasgele sayilar iiretememisinden

kaynaklanmaktadir.

Sekil 4.25den ise, integrali almman fonksiyonun boyutu arttik¢a, az sayida 6rnek
alinmas1 durumunda, boyut arttikca Monte Carlo reddetme yontemi ile gercek
integral degerleri arasindaki sapma miktarlarinda yiiksek bir artig gortilmektedir. Bu,
bir dnceki paragrafta anlatildigi gibi, diisiik sayida 6rnek gruplari igin, rasgele say1
iiretecimizin ideal bir say1 iireteci gibi davranamamasindan kaynaklanmaktadir. Bu
dezavantaj da, yiiksek sayida drnek gruplari alindiginda nispeten ortadan kalkmustir.
Yiiksek sayili Ornek gruplart icin meydana gelen sapma miktar1 sekilden de

goriilebilecegi gibi hep bir seviyenin altinda kalmistir.
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ALINAN INTEGRALIN BOYUTU

Sekil 4.25 Cok-boyutlu hiper kiirenin reddetme yontemi ile elde edilen integral degerinden sapma
miktarinin, degisik 6rnek sayilari i¢in, boyutsayisina gore degisiminin verdigi sonuglar
Bu hesaplamalardan elde edilen sonuglardan da anlasilabilecegi lizere, Monte Carlo
yontemi boyuta bagimli olmayan bir yontemdir. Fakat ideal bir rasgele sayi liretecine
ihtiya¢ duyar. lyi sonuglar elde edebilmek igin, iiretecin ideal davrandigi miktarda

ornek almak gerekmektedir.

Reddetme yonteminde integrali alinak fonksiyonun yaklasik bir matematiksel ifadesi
gerektiginden ve integrali alinacak hacmin simirlarimin iyt belirlenmesi

zorunlulugundan her problem i¢in uygun bir yontem degildir.
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5. SONUCLAR VE TARTISMA

Monte Carlo yontemi, kimyadan termodinamige ve atom fizigine kadar pek ¢ok
alanda basar1 uygulanan ve oldukca iyi sonuglar elde edilen bir yaklasim ve tekniktir.

Bu yontem ile ilgili, ¢esitli alanlarda pek ¢ok literatiir olusmustur.

Bu tezin yapilmasindaki amag, elektromanyetik problemlerde boyutu arttikga
coziilmesi giiclesen ve oldukca hizli degisen karmasik integrallere ve integral
degerinin bulunmas1 gereken ama tam olarak deterministik bir ifadesi
bulunamadigindan, sadece olasiliksal olarak ifade edilebilen fonksiyonlarin
coziimiinde Monte Carlo integral alma ydnteminin uygulanabilir olup olmadiginin

arastirilmak istenmesidir.

Oncelikle, yontemimizi uygulayabilmemiz ve daha iyi anlayabilmemiz
olasiliksal kavramlar {izerinde durulmasi gerekmektedir. Bu nedenle, ortalama,
varyans ve Monte Carlo yonteminin temelini olusturan merkezi limit teoreminden

bahsedilmis ve yontemin temelinin dayandigi mantik agiklanmistir.

Anlagilmasinin kolaylig1 agisindan, Monte Carlo integral alma yontemleri, basit bir

integral denklemine uygulanmis ve sonuclar1 yorumlanmistir. Caligmanin ilerleyen

icin

bolimlerinde ise, analitik integral alma yontemlerinin hata buydklukleri ve

yontemimizde meydana gelen hata biiytikliikleri irdelenmistir.

Buradan elde edilen sonuclardan, Monte Carlo integral alma yonteminin ancak

integral boyutunun 4. dereceden biiylik olan integaller icin avantajli sonuglar
verebilecegi ve sayisal tekniklere gore hassasiyeti daha diisiik oldugu anlagilmistir.
Belirli bir sekilde formiille ifade edilebilen ve boyu sayist az olan integraller igin

verimi oldukca diistiktiir.

Maalesef ki, ilgilenilen elektromanyetik problemlerdeki integrallere bu yéntemin

uygulanmasi pek avantajli olamayacagi ¢ok aciktir. Bu nedenle integral ¢oziimleri

yerine, Monte Carlo ydnteminin ve yaklasiminin elektromanyetik problemlere ne
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sekilde uygulandig1 arastirilarak, yontemin olasiliksal ve dogadaki olaylarin
incelenmesinde ne kadar verimli oldugundan bahsedilmistir. Monte Carlo yaklagimi
ile tekrar edilerek ortalamasi alinan problemlerin sonuclarinin, ger¢ek degerlerle

oldukea ortiisiir bir sekilde ¢iktig1 goriilmiistiir.

Bu yontem ozellikle, elektromanyetikte, ortam parametrelerinin rasgele degisiminin
canlandirilmasi, sa¢ilmanin meydana gelecegi rasgele ylizeylerin iiretilmesi, rasgele
sinirlarin  belirlenmesi ve bir sistemin genel performansinin belirlenmesindeki

hesaplamalarda yogun olarak kullanilanmaktadir.

Monte Carlo teknigi olasiliksal temelli bir yontem oldugundan dolayi, ¢ok fazla
hesaba ve rasgele ortamlar1 modelleyebilecek sayiya ihtiya¢c duymaktadir. Bunun
icinde giiclii bilgisayarlara ve ideal rasgele say1 lireteglerine ihtiya¢ duyulmaktadir.
Glinlimiizde, bilgisayarlarin hizlanmasi ile olasiliksal temelli rasgele islemlerin

¢bzumunde verimli bir yontem haline gelmektedir.

Monte Carlo teknigi, basit islemlere ve ¢ok boyutlu integrallere uygulanan, beklenen
degerlerin tahmin edilmesinde etkili ve gerekli bir tekniktir. Bu teknik, ¢cok-boyutlu
integraller icin, analitik formiillerden daha verimli bir tekniktir. Ayrica, 6zel
problemlere olasiliksal olarak rahatlikla adapte edilebilir ve belirli integrasyon
formiillerinin olmadig, standart analitik tekniklerle ¢coziilmesi verimsiz olacak, ¢ok

karmasik problemlere rahatlikla uygulanabilirdir.
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EKLER

C******************************************************)\'***

ADI  :PIR.FOR *
AMAC  : MONTE CARLO INTEGRALI UZERINDE *
DENEMELER YAPMAK

YONTEM : REJECTION YONTEMI (HIT & MISS) *

YAZAN : DILARA TAVUKCU

TARIH : ARALIK 1998 *

GUNCELLEME : NISAN 1999 *
kkkkkkkkkkkkhkkkhkkhkkkhkkhkkhkkhkkkhkkkhkkhkkkkhkkkkhkkkkhkkkkhkkkkhkkkkx

INTEGER SAYAC

INTEGER N(11),M,S,K,L,J,0

REAL  X,Y,PI,PIG,TOPPI

QO0O0O0O0O0O0O

C

C*************************

C GERCEK PIDEGERI *
C****‘k****************‘k***

PARAMETER (PIG = 3.1415927)
C

C**********************************

C CEVRIM DEGERLERI GIRILIYOR *

C**********************************

(; *kkkkk * *kkkkkkkkhk *kkkkkkkkk *%

C KAC TANE FARKLI ORNEK SAYISI SECILECEK  *
C****‘k****************************************
WRITE(*,*) 'KAC FARKLI ORNEK SAYISI SECILECEK, M=?(MAX=11)'
READ(*,*) M

(; *kkkkk * *kkkkkkkkk *kkkkkkkkk *%

C i. ORNEK SAYISI ALINIYOR *
C****‘k***********7\'****************************
DO L=1,M
WRITE(*,*) L,". ORNEK SAYISINI GIRINIZ '
READ(*,*) N(L)
END DO

WRITE(*,*) 'KAC DENEME GRUBU TEKRARI YAPILACAK, K=?'
READ(*,*) K
VERILEN HER ORNEK SAYISI ICIN 100 TEKRAR YAPILACAK *
MONTE CARLO YONTEMINDE BU SAYI 50, 100 GIBI  *
DEGERLER ALABILIR.
(MINIMUM SECYLEBYLECEK DEGERI 30'DUR) *

*kkkkk *kkkkkkkkk *kkkkkkkkk *kkkkkkkkk

K =100

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhhkkkhkhkkkkkkkkkkkkkkkkkhkhkkhkk

i. GIRILAN SAYIDA URETILECEK ORNEKLERIN *
KOYULACAGI OUT DOSYALARI ACILIYOR *
C****‘k***********7\'******************************‘k***‘k*‘k****
OPEN(UNIT=11,FILE="PIR1.DAT")
OPEN(UNIT=12,FILE="PIR2.DAT")
OPEN(UNIT=13,FILE="PIR3.DAT')

O0Q0 QO0O0O0OQ0O0OO0
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OPEN(UNIT=14,FILE="PIR4.DAT")
OPEN(UNIT=15,FILE="PIR5.DAT")
OPEN(UNIT=16,FILE="PIR6.DAT")
OPEN(UNIT=17,FILE="PIR7.DAT')
OPEN(UNIT=18,FILE='PIR8.DAT")
OPEN(UNIT=19,FILE='PIR9.DAT")
OPEN(UNIT=20,FILE="PIR10.DAT")
OPEN(UNIT=21,FILE="PIR11.DAT")

C
(:**************************************************************
C  TUM FARKLI ORNEK SAYILI GRUPLARIN ULASTIKLARI *
C INTEGRAL DEGERLERININ TOPLANDIGI OUT DOSYASI ACILIYOR *
(: *% *% * *% *% *% *% *% *% *% *% *% *% *%
OPEN(UNIT=30,FILE='SONR.DAT)
C
(:**********************************
C  CEVRIMLER BASLIYOR *
C CEVRIM SAYACLARI SIFIRLANIYOR *
(: *% *% * *% *% *% *% *%
DO S=1,M
TOPPI = 0.
C
DOL=1K
SAYAC =0
Pl =0.
C
DO J = 1,N(S)
C
(: *% *% * *% *% *% *% *% *% *% *% *
C  RASGELE SAYILAR URETILIYOR *
(:**************************************************
X=RAN2(-100)
Y=RAN2(-100)
C
(:******************************************************************
C INTEGRALI ALINAN BOLGENIN ICINDE OLAN NOKTALAR KABUL, *
C DISINDA OLANLAR DEGERLER REDDEDILIYOR
(: *% *% * *% *% *% *% *% *% * *% *% *% *% *%
IF(X**2 + Y*2 LE. 1.0) SAYAC = SAYAC + 1
ENDDO
C
(: *% *% * *% *% *% *% *% *% * *% *% *% *% *%
C TOPLAM NOKTA SAYISI ILE KABUL EDILEN NOKTA *
C SAYISININ ORANI BULUNUYOR

(:******************************************************************

Pl=4. * REAL(SAYAC) / REAL(N(S))
C

(; *kkkkk * *kkkkkkkkk *kkkkkkkkk * *kkkkkkkkk *kkkkk

C  ELDE EDILEN DEGERLER ILGILI DOSYALARA YAZILIYOR *
(:****************************************************************
IF(S.EQ.1)WRITE(11,*) L,PI,PI-PIG
IF(S.EQ.2)WRITE(12,*) L,PI,PI-PIG
IF(S.EQ.3)WRITE(13,*) L,PI,PI-PIG
IF(S.EQ.4)WRITE(14,*) L,PI,PI-PIG
IF(S.EQ.5)WRITE(15,*) L,PI,PI-PIG
IF(S.EQ.6)WRITE(16,*) L,PI,PI-PIG
IF(S.EQ.7)WRITE(17,*) L,PI,PI-PIG
IF(S.EQ.8)WRITE(18,*) L,PI,PI-PIG
IF(S.EQ.9)WRITE(19,*) L,PI,PI-PIG
IF(S.EQ.10)WRITE(20,*) L,PI,PI-PIG
IF(S.EQ.11)WRITE(21,*) L,PI,PI-PIG
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SON DOSYAYA ISLENMEK UZERE ELDE EDILEN TUM Pl| DEGERLERI TUTULUYOR *

*kkkkk *kkkkkkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkhkhk *kkkkkkkkk

TOPPI = P| + TOPP

QOO0 QOO0

TEK ADIMDA ELDE EDILEN INTEGRAL DEGERI ICIN *
GRUBUN ORTALARINDAN BIR DEGER SECILIYOR *
kkkkkkkkkkkkkhkkkkkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkhkhkkkkhkhkkkkkhkkkkkhkkkkk
O0=1

IF(L.EQ.60) THEN
WRITE(*,55) N(S),0, PI
WRITE(30,55) N(S),0, PI
WRITE(*,56) N(S),PI-PIG, 100.*(PI-PIG)/PIG
WRITE(30,56) N(S),PI-PIG, 100.*(PI-PIG)/PIG

END IF
C
C**********************************‘k*‘k*****
C MONTE CARLO CEVRIMI BITIYOR *
C *% **% * *% *% ** *% *% **% *
ENDDO
C
TOPPI = TOPPI/REAL(K)
C
C *% **% * *% *% **% *% *% **% *% *% *% **% *%
C MONTE CARLO REDDETME YONTEMI ILE BULUNAN PI DEGERI *
C DOSYALARA YAZILIYOR *
C GERCEK Pl DEGERINDEN % OLARAK SAPMASI BULUNUYOR *
C****************7\'*****************‘k*‘k***********************

WRITE(30,55) N(S), K, TOPPI
WRITE(*,55) N(S), K, TOPPI
WRITE(30,56) N(S), TOPPI-PIG, 100.*(TOPPI-PIG)/PIG
WRITE(*,56) N(S), TOPPI-PIG, 100.*(TOPPI-PIG)/PIG
55 FORMAT(I8, ' DENEMENIN ',14, KEZ TEKRARI SONUCUNDA PI =, F11.8)
56 FORMAT(I8, DENEME SONUCUNDA ELDE EDILEN PI DEGERINDEN SAPMASI
' F11.8, BUNUN DEGERI %',F11.8)
C
ENDDO

*kkkkk * *kkkkkkkkhk *kkkkk

OUT DOSYALARI KAPATILIYOR ~ *
CLOSE(11)
CLOSE(12)
CLOSE(13)
CLOSE(14)
CLOSE(15)
CLOSE(16)
CLOSE(17)
CLOSE(18)
CLOSE(19)
CLOSE(20)
CLOSE(21)

Q000

CLOSE(30)

STOP
END

93



(:******************************************************************

C

(0,1) ARASINDA DUZGUN DAGILIMLI RASGELE SAYI URETECI

C

*% *kkkkkkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk *kkkkk

C

11

*kkkkk *kkkkkkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkhkhk *kkkkk

REAL FUNCTION RAN2(IDUM)
PARAMETER (M=714025,1A=1366,1C=150889,RM=1.4005112E-6)
DATA IFF /0/
COMMON/DENE/IY,IR(97)

WRITE(*,*) IFF

IF(IDUM.LT.0.OR.IFF.EQ.0)THEN
IFF=1
IDUM=MOD(IC-IDUM,M)
DO 11 J=1,97
IDUM=MOD(IA*IDUM+IC,M)
IR(J)=IDUM
CONTINUE
IDUM=MOD(IA*IDUM+IC,M)
IY=IDUM
ENDIF

WRITE(*,*) IY
J=1+(97*1Y)/M
IF(J.GT.97.0R.J.LT.1)PAUSE
IY=IR(J)
RAN2=1Y*RM
IDUM=MOD(IA*IDUM+IC,M)
IR(J)=IDUM
RETURN
END

(:***************
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C**********************************************************

ADI : PIA.FOR *

AMAC : MONTE CARLO INTEGRALI UZERINDE *
DENEMELER YAPMAK *

YONTEM : AVERAGING YONTEMI *

YAZAN : DILARA TAVUKCU *

TARIH : OCAK 1999 *

INTEGER SAYAC

INTEGER N(11),K,L,J,M,O

REAL  X,Y,PI,PIG,TOPPIINTEG

PARAMETER(P1G=3.1415927)

QO0O0O0O00

C

C*************************

C GERCEK PIDEGERI *
C****‘k****************‘k***

PARAMETER (PIG = 3.1415927)
C

C**********************************

C CEVRIM DEGERLERI GIRILIYOR *

C**********************************

(; *kkkkk * *kkkkkkkkhk *kkkkkkkkk *%

C KAC TANE FARKLI ORNEK SAYISI SECILECEK *
C****‘k***)\'************‘k*********************
WRITE(**) 'KAC FARKLI ORNEK SAYISI SECILECEK M=?(MAX=11)'
READ(**) M
C
DO L=1,M
WRITE(**) L,. ORNEK SAYISINI GIRINIZ'
READ(*,*) N(L)
END DO

C
C  WRITE(**) 'KAC DENEME GRUBU TEKRARI YAPILACAK, K=?"
C READ(** K

C****************7\'*****************‘k***)\'********‘k***‘k*****

C VERILEN HER ORNEK SAYISI ICIN 100 TEKRAR YAPILACAK *
C  MONTE CARLO YONTEMINDE BU SAYI 50, 100 GIBI ~ *

C DEGERLER ALABILIR. *
C (MINIMUM SECYLEBYLECEK DEGERI 30'DUR) *
C*********************************************************
K =100
C
C *% *% * *% *% *% *% *% *% * *% *% *%
C i. GIRILAN SAYIDA URETILECEK ORNEKLERIN *
C KOYULACAGI OUT DOSYALARI ACILIYOR *

C**********************************************************

OPEN(UNIT=11,FILE="PIA1.DAT)
OPEN(UNIT=12,FILE="PIA2.DAT")
OPEN(UNIT=13,FILE="PIA3.DAT")
OPEN(UNIT=14,FILE="PIA4.DAT")
OPEN(UNIT=15,FILE="PIA5.DAT")
OPEN(UNIT=16,FILE="PIAG6.DAT")
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OPEN(UNIT=17,FILE="PIA7.DAT")
OPEN(UNIT=18,FILE="PIA8.DAT")
OPEN(UNIT=19,FILE="PIA9.DAT")
OPEN(UNIT=20,FILE='"PIA10.DAT")
OPEN(UNIT=21,FILE='"PIA11.DAT)

C

(: *% **% *% *% *% **% *% *% **% *% *% **% **% *%

C TUM FARKLI ORNEK SAYILI GRUPLARIN ULASTIKLARI *

C INTEGRAL DEGERLERININ TOPLANDIGI OUT DOSYASI ACILIYOR *

(:**************************************************************

OPEN(UNIT=30,FILE="SONA.DAT")

(; *kkkkk *kkkkkkkkkkkkhk *kkkkk

C CEVRIMLER BASLIYOR *
C CEVRIM SAYACLARI SIFIRLANIYOR *

(:**********************************

DO S=1,M
TOPPI =0.
C
DOL=1K
INTEG = 0.
Pl =0.
C
DO J = 1,N(S)
C

(:**********************************************

C X-EKSENINDE RASGELE BIR SAYI SECILIYOR  *

(; *kkkkk * *kkkkkkkkhk *kkkkkkkkk *kkkk

X=RAN2(-100)

C

(:************************************************************

C BU SECILEN X-DEGERINDE FONKSIYONUN DEGERI HESAPLANIYOR *

C INTEGRAL DEGERI ELDE EDILEN DEGER * ARALIK'TIR *
C ILGILENDIGIMIZ ARALIKTA (B-A)=(1-0)=1'DIR *
C | = Y*(B-A) = Y *

(:************************************************************

Y=SQRT(1-(X*X))
C

(; *kkkkk * *kkkkkkkkk *kkkkkkkkk *kkkkkkkkkkkkhk *%

C INTEGRAL DEGERI ORTALAMASI ALINMAK UZERE TOPLANIYOR  *

(:************************************************************

INTEG=INTEG + Y

ENDDO
C

(:************************************************************

C SECILEN RASGELE X-DEGERLERINDEKI FONKSIYONUN ALDIGI  *

C DEGERLERIN ORTALAMASI ALINIYOR
(: *% *% * *% *% *% *% *% *% *% *% *% *% *%

Pl=4. * INTEG / REAL(N(S))
C
(:****************************************************************
C  ELDE EDILEN DEGERLER ILGILI DOSYALARA YAZILIYOR *
(: *% *% * *% *% *% *% *% *% * *% *% *% *% *%

IF(S.EQ.1) WRITE(11,*) L, PI, PI-PIG
IF(S.EQ.2) WRITE(12,*) L, PI, PI-PIG
IF(S.EQ.3) WRITE(13,*) L, PI, PI-PIG
IF(S.EQ.4) WRITE(14,*) L, PI, PI-PIG
IF(S.EQ.5) WRITE(15,*) L, PI, PI-PIG
IF(S.EQ.6) WRITE(16,*) L, PI, PI-PIG
IF(S.EQ.7) WRITE(17,*) L, PI, PI-PIG
IF(S.EQ.8) WRITE(18,*) L, PI, PI-PIG
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IF(S.EQ.9) WRITE(19,*) L, PI, PI-PIG

IF(S.EQ.10) WRITE(20,*) L, PI, PI-PIG

IF(S.EQ.11) WRITE(21,*) L, PI, PI-PIG
C

C****************7\'*************************************

C SON DOSYAYA ISLENMEK UZERE ELDE EDILEN TUM Pl *

C DEGERLERININ ORTALAMASI TUTULUYOR *
C *% *% *% *% *% *% *% *% *% *% *% *% *
TOPPI = PI + TOPPI
C
C************************************************************
C TEK ADIMDA ELDE EDILEN INTEGRAL DEGERI ICIN *
C GRUBUN ORTALARINDAN BIR DEGER SECILIYOR *
C *% *% * *% *% *% *% *% *% *% *% *% *% *%
o=1
IF(L.EQ.60)THEN
WRITE(*,55) N(S),0,PI
WRITE(30,55) N(S),0,PI
WRITE(*,56) N(S), PI-PIG, 100.*(PI-PIG)/PIG
WRITE(30,56) N(S), PI-PIG, 100.*(PI-PIG)/PIG
END IF
C
C *% *% * *% *% *% *% *% *% *
C MONTE CARLO CEVRIMI BITIYOR *
C**********************************‘k*‘k*****
ENDDO
C
TOPPI = TOPPI/REAL(K)
C
C****************7\'*****************‘k*‘k***********************
C MONTE CARLO REDDETME YONTEMI ILE BULUNAN PI DEGERI  *
C DOSYALARA YAZILIYOR *
C GERCEK PI DEGERINDEN % OLARAK SAPMASI BULUNUYOR *
C *% *% * *% *% *% *% *% *% * *% *% *% *%

WRITE(30,55) N(S), K, TOPPI
WRITE(*,55) N(S), K, TOPPI
WRITE(30,56) N(S), TOPPI-PIG, 100.*(TOPPI-PIG)/PIG
WRITE(*,56) N(S), TOPPI-PIG, 100.*(TOPPI-PIG)/PIG
55 FORMAT(I8, ' DENEMENIN '14,' KEZ TEKRARI SONUCUNDA PI =, F11.8)
56 FORMAT(I8, DENEME SONUCUNDA ELDE EDILEN P| DEGERINDEN SAPMASI
' F11.8, BUNUN DEGERI %',F11.8)
C
ENDDO
C

C********)\'*******7\'*******************

C  OUT DOSYALARI KAPATILIYOR  *
C *% *% * *% *% *% *% *%

CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)

CLOSE(19)

CLOSE(20)

CLOSE(21)

CLOSE(30)
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STOP
END
C

(; *kkkkk *kkkkkkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkhkhk *kkkkk

C (0,1) ARASINDA DUZGUN DAGILIMLI RASGELE SAYI URETECI

C******************************************************************

(; *kkkkk *kkkkkkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk *kkkkk

REAL FUNCTION RAN2(IDUM)
PARAMETER (M=714025,1A=1366,1C=150889,RM=1.4005112E-6)
DATA IFF /0/
COMMON/DENE/IY,IR(97)
C  WRITE(**) IFF
IF(IDUM.LT.0.OR.IFF.EQ.0)THEN

IFF=1

IDUM=MOD(IC-IDUM,M)

DO 11 J=1,97
IDUM=MOD(IA*IDUM+IC,M)
IR(J)=IDUM

11  CONTINUE
IDUM=MOD(IA*IDUM+IC,M)
IY=IDUM

ENDIF

C  WRITE(** IY
J=1+(97*1Y)/M
IF(J.GT.97.0R.J.LT.1)PAUSE
IY=IR(J)
RAN2=IY*RM
IDUM=MOD(IA*IDUM+IC,M)
IR(J)=IDUM
RETURN
END

C***************
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C**********************************************************

ADI : PIC.FOR *
AMAC : MONTE CARLO INTEGRALI UZERINDE *
DENEMELER YAPMAK *

YONTEM : CONTROL VARIATES YONTEMI *

YAZAN : DILARA TAVUKCU *

TARIH : OCAK 1999 *

GUNCELLEME : NISAN 1999 *
kkkkkkkkkkkkkhkkkkkhkkkkhkhkkkkhkhkkkhkhkkkkhkhkkkhkhkkkkhkkkkkkkkkkkkkx

INTEGER SAYAC

INTEGER N(11),K,L,J,M,O

REAL  X,Y,PI,PIG,TOPPIINTEG,H

QO0O0O0O0O0O0O

C

C*************************

C GERCEK PI DEGERI *
C****‘k****************‘k***
PARAMETER (PIG = 3.1415927)
C
C***********************************************‘k
BU PROGRAMDA KONTROL FONKSIYONU OLARAK ~ *
(1-X"3) FONKSIYONU KULLANILMISTIR ~ *
BU FONKSIYONUN (0,1) ARTALIGINDA INTEGRALI *
3./4.=0.75 TIR. *
INTEGRAL = (F(X)-H(X))(B-A) + IH *
kkkkkkkkkkhkkkkkhkkkkhkkkkhkkkkkhkkkkhkkhkkkhkhkkkhkhkkkhkkhkkkhkkhkkkkkhkkkkkkkkx
F(X): INTEGRALI BULUNMAK ISTENEN FONKSIYONUN
X NOKTASINDAKI DEGERI

H(X): INTEGRAL DEGERI BILINEN KONTROL FONKSIYONUNUN
X NOKTASINDAKI DEGERI

O0000000Q0O0000Q0O0

IH : KONTROL FONKSIYONUN (A,B) ARALIGINDAKI INTEGRALI *

C********)\'*******7\'*******************************************

C

C**********************************

C CEVRIM DEGERLERI GIRILIYOR *

(; *kkkkk * *kkkkkkkkk *kkkkk

C********)\'**********************************

C KAC TANE FARKLI ORNEK SAYISI SECILECEK *
C********)\'*******7\'**************************
WRITE(*,*) 'KAC FARKLI ORNEK SAYIS| SECILECEK M=?(MAX=11)
READ(*,*) M
C

C*********************************************

C i. ORNEK SAYISI ALINIYOR *
C *% *% * *% *% *% *% *% *% *
DO L=1,M
WRITE(**) L,. ORNEK SAYISINI GIRINIZ'
READ(**) N(L)
END DO

C
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WRITE(*,*) 'KAC DENEME GRUBU TEKRARI YAPILACAK, K=?'
READ(*) K

*kkkkk *% *kkkkk *kkkkkkkkk *kkkkkkkkkkkkhk

C
C
C
C VERILEN HER ORNEK SAYISI ICIN 100 TEKRAR YAPILACAK *
C MONTE CARLO YONTEMINDE BU SAYI 50 100 GIBI *

C DEGERLER ALABILIR.

C (MINIMUM SECYLEBYLECEK DEGERI 30'DUR) *

C

C

C

C

C

C

*kkkkk *kkkkkkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhhkhkhkhkkkhkhkkkkkkkkkkkkkkkkkhkhkhkk

i. GIRILAN SAYIDA URETILECEK ORNEKLERIN *
KOYULACAGI OUT DOSYALARI ACILIYOR *

*kkkkk * *kkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk

OPEN(UNIT=11,FILE='PIC1.DAT")
OPEN(UNIT=12,FILE="PIC2.DAT")
OPEN(UNIT=13,FILE="PIC3.DAT’)
OPEN(UNIT=14,FILE="PIC4.DAT")
OPEN(UNIT=15,FILE="PIC5.DAT")
OPEN(UNIT=16,FILE="PIC6.DAT")
OPEN(UNIT=17,FILE="PIC7.DAT")
OPEN(UNIT=18,FILE="PIC8.DAT")
OPEN(UNIT=19,FILE="PIC9.DAT")
OPEN(UNIT=20,FILE="PIC10.DAT")
OPEN(UNIT=21,FILE='PIC11.DAT")

C

C *% **% * *% *% **% *% *% **% *% *% *% **% *%

C TUM FARKLI ORNEK SAYILI GRUPLARIN ULASTIKLARI *

C INTEGRAL DEGERLERININ TOPLANDIGI OUT DOSYASI ACILIYOR *

C****‘k***)\'*******7\'*********************************************
OPEN(UNIT=30,FILE="SONC.DAT")

C

C *% **% * *% **% *% *% *%

C CEVRIMLER BASLIYOR *

C CEVRIM SAYACLARI SIFIRLANIYOR *

C**********************************

DO S=1,M
TOPPI =0.
C
DOL=1K
INTEG = 0.
Pl =0.
C
DO J = 1,N(S)
C

C********)\'*******7\'*****************************

C X-EKSENINDE RASGELE BIR SAYI SECILIYOR *

C *% *% * *% *% *% *% *% *%
X=RAN2(-100)
C
C****************7\'******************************‘k*****‘k******
C  BU SECILEN X-DEGERINDE FONKSIYONUN VE YARDIMCI *
C FONKSIYONUN DEGERI HESAPLANIYOR *
C YARDIMCI FONKSIYONUN (0,1) ARTALIGINDA INTEGRALI *
C 3./4.=0.75 TIR.
C INTEGRAL = (F(X)-H(X))(B-A) + IH *
C *% *% * *% *% *% *% *% *% *% *% *%
Y=SQRT(1-(X*X))

H=1-(X*X*X)

C

C********)\'***)\'***7\'**************************************)\'****
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C INTEGRAL DEGERI ORTALAMASI ALINMAK UZERE TOPLANIYOR  *

(; *kkkkk *kkkkkkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk *%

C INTEGRAL=(Y-H)*(B-A)+IH
INTEG=INTEG + (Y-H) + 0.75

C

C******************************************

MONTE CARLO CEVRIMI BITIYOR *

*kkkkk *kkkkkkkkkkkkhk *kkkkkkkkk

ENDDO

Pl=4. * INTEG / REAL(N(S))

*kkkkk * *kkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk *kkkkk

ELDE EDILEN DEGERLER ILGILI DOSYALARA YAZILIYOR *
kkkkkkkkkkkkkkhkhkhkkkkhkhkhkkkhkkhhkhkkhkhhkhkhkkhkhhkhkhkkhkhhhhkhkkhhkhhkkhhhhkhkhhhkkhhhhkkkhkx
IF(S.EQ.1) WRITE(11,) L, PI, PI-PIG
IF(S.EQ.2) WRITE(12,%) L, PI, PI-PIG
IF(S.EQ.3) WRITE(13,%) L, PI, PI-PIG
IF(S.EQ.4) WRITE(14,%) L, PI, PI-PIG
IF(S.EQ.5) WRITE(15,%) L, PI, PI-PIG
IF(S.EQ.6) WRITE(16,) L, PI, PI-PIG
IF(S.EQ.7) WRITE(17,%) L, PI, PI-PIG
IF(S.EQ.8) WRITE(18,) L, PI, PI-PIG
IF(S.EQ.9) WRITE(19,%) L, PI, PI-PIG
IF(S.EQ.10) WRITE(20,*) L, PI, PI-PIG
IF(S.EQ.11) WRITE(21,*) L, PI, PI-PIG

QO0OQ0O O QO

C

C *% **% * *% *% **% *% *% ** *% *% *% *

C SON DOSYAYA ISLENMEK UZERE ELDE EDILEN TUM Pl *

C DEGERLERININ ORTALAMASI TUTULUYOR *

C********)\'*******7\'*************************************

TOPPI = Pl + TOPP

C
C *% *% * *% *% *% *% *% *% * *% *% *% *%
C TEK ADIMDA ELDE EDILEN INTEGRAL DEGERI ICIN *
C GRUBUN ORTALARINDAN BIR DEGER SECILIYOR *
C *% *% * *% *% *% *% *% *% * *% *% *% *%
o=1
IF(L.EQ.60)THEN
WRITE(*,55) N(S),0,PI
WRITE(30,55) N(S),0,PI
WRITE(*,56) N(S), PI-PIG, 100.*(PI-PIG)/PIG
WRITE(30,56) N(S), PI-PIG, 100.*(PI-PIG)/PIG
END IF
C
C****************7\'*************************
C MONTE CARLO CEVRIMI BITIYOR *
C *% *% * *% *% *% *% *% *% *
ENDDO
C
C****************7\'******************************‘k*****‘k******
C MONTE CARLO REDDETME YONTEMI ILE BULUNAN PI DEGERI  *
C DOSYALARA YAZILIYOR *
C GERCEK PI DEGERINDEN % OLARAK SAPMASI BULUNUYOR

C********)\'***)\'***7\'**************************************)\'****

WRITE(30,55) N(S), K, TOPPI
WRITE(*,55) N(S), K, TOPPI
WRITE(30,56) N(S), TOPPI-PIG, 100.*(TOPPI-PIG)/PIG
WRITE(*,56) N(S), TOPPI-PIG, 100.*(TOPPI-PIG)/PIG
55 FORMAT(I8, ' DENEMENIN ',14, KEZ TEKRARI SONUCUNDA PI =, F11.8)
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56 FORMAT(I8,' DENEME SONUCUNDA ELDE EDILEN PI DEGERINDEN SAPMASI
"F11.8,' BUNUN DEGERI %',F11.8)
C
END DO
C

(:************************************

C OUT DOSYALARI KAPATILIYOR  *
(: *% *% *% *% *% *% *% *%
CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)

CLOSE(19)

CLOSE(20)

CLOSE(21)

C
CLOSE(30)

STOP
END
C

(:******************************************************************

C (0,1) ARASINDA DUZGUN DAGILIMLI RASGELE SAYI URETECI *

(; *kkkkk * *kkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkhkhk *kkkkk

(; *kkkkk * *kkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk *kkkkk

REAL FUNCTION RAN2(IDUM)
PARAMETER (M=714025,1A=1366,1C=150889,RM=1.4005112E-6)
DATA IFF /0/
COMMON/DENE/IY,IR(97)
C  WRITE(** IFF
IF(IDUM.LT.0.OR.IFF.EQ.0)THEN

IFF=1

IDUM=MOD(IC-IDUM,M)

DO 11 J=1,97
IDUM=MOD(IA*IDUM+IC,M)
IR(J)=IDUM

11  CONTINUE
IDUM=MOD(IA*IDUM+IC,M)
IY=IDUM

ENDIF

C  WRITE(**) IY
J=1+(97*1Y)/M
IF(J.GT.97.0R.J.LT.1)PAUSE
IY=IR(J)
RAN2=1Y*RM
IDUM=MOD(IA*IDUM+IC,M)
IR(J)=IDUM
RETURN
END

(:***************
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C**********************************************************

C ADI : PILLFOR *
C AMAC : MONTE CARLO INTEGRALI UZERINDE *
C DENEMELER YAPMAK *
C YONTEM : IMPORTANCE SAMPLING YONTEM *
C YAZAN :DILARA TAVUKCU *
C TARIH :MAYIS 1999 *
C *% **% *% *% *% **% *% *% **% *% *% *% **%
INTEGER SAYAC
INTEGER N(11),K,L,J,M,O
REAL  X,Y,PI,PIG, TOPPIINTEG,P,PSI,E
C
C *% **% * *% *% **% *% *%

C GERCEK PARAMETRE DEGERLERI *

C********)\'**************************

PARAMETER(P1G=3.1415927, E=2.713)

*kkkkk * *kkkkkkkkk *kkkkkkkkk *kkkkkkkkk

BU PROGRAMDA OLASILIK YARDIMCI FONKSIYON OLARAK *
H(X)= EA(-X) FONKSYYONU KULLANILMISTIR ~ *

BU FONKSIYON (0,1) ARASINDA NORMALYZE EDYLEREK *
P(X)=E~(-X)*E/(E-1) OLASILIK YOGUNLUK ~ *

FONKSYYONUNA ERYSYLMYSTYR *

C****‘k****************‘k************‘k***)\'********‘k***‘k*

C BU PDF FONKSIYONUN (0,1) ARTALIGINDA INTEGRALI *

C OLASILIK DAGILIM FONKSIYONLARI KURALLARINA ~ *

O00000Q0

C UYGUN OLARAK 1DIR. *
C PP(X)(0,1);EXP(-X)*E/(E-1) *

C =|0,X|,(-EXP(-X))*E/(E-1) *

C *

C BU FONKSIYONUN OLASILIK DAGILIM FONKSIYONU; ~ *

C F(X)=(e/(e-1))(1-e*-X) DIR. *

C *
C PSI=(-EXP(-X)+1)*E/(E-1) => X=-LOG(1-Y*(E-1)/E ) *

C COZUMU ICIN TEZE BAKINIZ *
C****‘k***********7\'******************************‘k***

C

C *% *% * *% *% *% *% *%

C CEVRIM DEGERLERI GIRILIYOR *

C****‘k***)\'********‘k***‘k************

C********)\'*******7\'**************************

C KAC TANE FARKLI ORNEK SAYISI SECILECEK *

C *% *% * *% *% *% *% *% *% *
WRITE(**) 'KAC FARKLI ORNEK SAYISI SECILECEK M=?(MAX=11)'
READ(**) M

(; *kkkkk * *kkkkkkkkk *kkkkkkkkk *

C i. ORNEK SAYISI ALINIYOR *
C****‘k***********7\'****************************
DO L=1,M
WRITE(*,*) L,. ORNEK SAYISINI GIRINIZ'
READ(**) N(L)
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END DO

C

C WRITE(**) 'KAC DENEME GRUBU TEKRARI YAPILACAK, K=?'
C READ(** K

C**********************************‘k****************‘k*****

C VERILEN HER ORNEK SAYISI ICIN 100 TEKRAR YAPILACAK *
C MONTE CARLO YONTEMINDE BU SAYI 50, 100 GIBI ~ *

C DEGERLER ALABILIR. *
C (MINIMUM SECYLEBYLECEK DEGERI 30'DUR) *
C**********************************‘k************‘k***‘k*****
K =100
C
C *% ** * *% *% **% *% *% **% *% *% **% **%
C i. GIRILAN SAYIDA URETILECEK ORNEKLERIN *
C KOYULACAGI OUT DOSYALARI ACILIYOR *

C**********************************************************

OPEN(UNIT=11,FILE="PII1.DAT")
OPEN(UNIT=12,FILE="PII12.DAT")
OPEN(UNIT=13,FILE="PII3.DAT")
OPEN(UNIT=14,FILE="PI14.DAT")
OPEN(UNIT=15,FILE="PII5.DAT")
OPEN(UNIT=16,FILE="PII6.DAT")
OPEN(UNIT=17,FILE='PII7.DAT")
OPEN(UNIT=18,FILE=PII8.DAT")
OPEN(UNIT=19,FILE="PII19.DAT")
OPEN(UNIT=20,FILE="PII10.DAT")
OPEN(UNIT=21,FILE='PII11.DAT")

C
C *% *% * *% *% *% *% *% *% *% *% *% *% *%
C  TUM FARKLI ORNEK SAYILI GRUPLARIN ULASTIKLARI *
C INTEGRAL DEGERLERININ TOPLANDIGI OUT DOSYASI ACILIYOR *
C *% *% * *% *% *% *% *% *% *% *% *% *% *%
OPEN(UNIT=30,FILE='SONI.DAT)
g****‘k***)\'********‘k***‘k************
C  CEVRIMLER BASLIYOR *
C CEVRIM SAYACLARI SIFIRLANIYOR *
C *% *% * *% *% *% *% *%
DO S=1,M

TOPPI =0.

C
DOL=1,K

INTEG = 0.

Pl =0.
C

DO J = 1,N(S)
C
C *% *% * *% *% *% *% *% *% * *% *
C  RASGELE SAYILAR URETILIYOR *

C**************************************************

PSI=RAN2(-100)

(; *kkkkk * *kkkkkkkkk *kkkkkkkkk * *kkkk

C TANIMSIZ DEGERLER GRUPTAN CIKARTILIYOR  *

C**************************************************

IF(PSI.EQ.0.00000000) PSI=0.00000001

C OLASILIK DAGILIM FONKSIYONUNDAN TERS ALINARAK
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C ISTENEN OLASILIK YOGUNLUK FONKSIYONLU SAHIP SAYILAR URETILIYOR

X=-LOG(1-PSI*(E-1)/E )
kkkkkkkkhkkkhkkkkkhkkkkhkkhkkhkkhkhkkkhkhkhkkhkkhkhkkhkkhkkkhkkhkkkhkkhkkkhkkhkkkhkkhkkkkkkkkkkkhkkkkk
C
*k%

C ISTENEN OLASILIK YOGUNLUK FONKSIYONLUGUNA SAHIP URETILEN SAYILAR

*

X-EKSENINDE RASGELE URETILMIS OLARAK ELE ALINARAK IMPORTANCE

0

SAMLIPNG YONTEMI UYGULANDI I(X)=Y (X)/P(X)

*0O

*
*
*

Y=SQRT(L.-(X*X))
P=EXP(-X)*E/(E-1)
INTEGRAL=Y(X)/P(X) Y=P OLARAK KULLANILDI
INTEG=INTEG + Y/P
ENDDO

@

*kkkkk * *kkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkhkhk *%

SECILEN RASGELE X-DEGERLERINDEKI FONKSIYONUN ALDIGI  *
DEGERLERIN ORTALAMASI ALINIYOR *

kkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkrkkkkkkkkkkkkkhkhhhhhkhkkkkx

Q0O0Q0O

Pl=4. * INTEG / REAL(N(S))
C

C********)\'*****************************)\'*******7\'*****************

C  ELDE EDILEN DEGERLER ILGILI DOSYALARA YAZILIYOR *

C *% *% * *% *% *% *% *% *% *% *% *% *% *% *%
IF(S.EQ.1) WRITE(11,%) L, PI, PI-PIG
IF(S.EQ.2) WRITE(12,*) L, PI, PI-PIG
IF(S.EQ.3) WRITE(13,*) L, PI, PI-PIG
IF(S.EQ.4) WRITE(14,*) L, PI, PI-PIG
IF(S.EQ.5) WRITE(15,*) L, PI, PI-PIG
IF(S.EQ.6) WRITE(16,*) L, PI, PI-PIG
IF(S.EQ.7) WRITE(17,*) L, PI, PI-PIG
IF(S.EQ.8) WRITE(18,*) L, PI, PI-PIG
IF(S.EQ.9) WRITE(19,*) L, PI, PI-PIG
IF(S.EQ.10) WRITE(20,) L, PI, PI-PIG
IF(S.EQ.11) WRITE(21,%) L, PI, PI-PIG

C

C********)\'*******7\'*************************************

C SON DOSYAYA ISLENMEK UZERE ELDE EDILEN TUM Pl *

C DEGERLERININ ORTALAMASI TUTULUYOR *
C *% *% * *% *% *% *% *% *% * *% *% *
TOPPI = Pl + TOPP
C
C****************7\'******************************‘k*****‘k******
C  TEK ADIMDA ELDE EDILEN INTEGRAL DEGERI ICIN *
C GRUBUN ORTALARINDAN BIR DEGER SECILIYOR *
C *% *% * *% *% *% *% *% *% * *% *% *% *%

o=1
IF(L.EQ.60)THEN

WRITE(*,55) N(S),0,PI

WRITE(30,55) N(S),0,PI

WRITE(*,56) N(S), PI-PIG, 100.*(PI-PIG)/PIG

WRITE(30,56) N(S), PI-PIG, 100.*(PI-PIG)/PIG
END IF
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MONTE CARLO CEVRIMI BITIYOR *

*kkkkk *kkkkkkkkkkkkhk *kkkkkkkkk

ENDDO

TOPPI = TOPPI/REAL(K)

*kkkkk * *kkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk *%

DOSYALARA YAZILIYOR
GERCEK PI DEGERINDEN % OLARAK SAPMASI BULUNUYOR
WRITE(30,55) N(S), K, TOPPI
WRITE(*,55) N(S), K, TOPPI
WRITE(30,56) N(S), TOPPI-PIG, 100.*(TOPPI-PIG)/PIG
WRITE(*,56) N(S), TOPPI-PIG, 100.*(TOPPI-PIG)/PIG

QO00Q0 O QOO0

C

MONTE CARLO REDDETME YONTEMI ILE BULUNAN PI DEGERI

55 FORMAT(I8,' DENEMENIN ',14," KEZ TEKRARI SONUCUNDA PI ="

> , F12.8)
56 FORMAT(18,' DENEMENIN Pl DEGERINDEN SAPMASI"
> ,F11.8," BUNUN DEGERI % ',F12.8)
C
END DO
C

C********)\'*******7\'*******************

C  OUT DOSYALARI KAPATILIYOR  *
C *% *% * *% *% *% *% *%

CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)

CLOSE(19)

CLOSE(20)

CLOSE(21)

CLOSE(30)

STOP
END
C

C**************************************)\'*******7\'*******************

C (0,1) ARASINDA DUZGUN DAGILIMLI RASGELE SAYI URETECI

(; *% *kkkkkkkkk *kkkkkkkkk *kkkkkkkkk *kkkkk

(; *kkkkk * *kkkkkkkkk *kkkkkkkkk * *kkkkkkkkk *kkkkk

REAL FUNCTION RAN2(IDUM)
PARAMETER (M=714025,|A=1366,IC=150889,RM=1.4005112E-6)
DATA IFF /0/
COMMON/DENE/IY,IR(97)

C  WRITE(**) IFF
IF(IDUM.LT.0.OR.IFF.EQ.0)THEN

IFF=1

IDUM=MOD(IC-IDUM,M)

DO 11 J=1,97
IDUM=MOD(IA*IDUM+IC,M)
IR(J)=IDUM

11  CONTINUE
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IDUM=MOD(IA*IDUM+IC,M)
IY=IDUM
ENDIF
C  WRITE(** IY
J=1+(97*IY)/M
IF(J.GT.97.0R.J.LT.1)PAUSE
IY=IR(J)
RAN2=IY*RM
IDUM=MOD(IA*IDUM+IC,M)
IR(J)=IDUM
RETURN
END

C***************
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(:***********************************************************

ADI : PIS.FOR *
AMAC : MONTE CARLO INTEGRALI ILA SIMPSON YONTEMINI *
KARSILASTIRMAK ICIN YAPILAN PROGRAM  *

*

YONTEM : SIMPSON YONTEMI *

UYGULAMA : DILARA TAVUKCU *
*

This computer program is part of the book, "An *

Introduction to Computatinal Physics," written ~ *
by Tao Pang and published and copyrighted *
by Cambridge University Press in 1997. *

No warranties, express or implied, are made for this *
program. *

*

*kkkkk * *kkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk *

PROGRAM INTEGRAL *
Main program for evaluation of an integral with *
integrand sqrt(1-x"2) in the region if [0,1.] *

kkkkkkkkkkkkkkkkkkkkkkkkkkkhhkkkkhkkkkkkkkkkkkkhkhkhkhkhkhkhhkkkkkkx

OQO0O00QO0000000QOO0OO0O0

PARAMETER(N=9)
REAL X(N),F(N)

C
H = 1./(N-1)
C
DO 100 I=1,N
X()=H*(I-1)

F()= SQRT(1-X()*X(1))
WRITE(*,*) X(1),F(I)
100 CONTINUE

C
S =0
SO0 =0
S1=0
S2 =0
C

DO 101 I= 2,N-1,2
S1=S1 + F(I-1)
S0 = S0 + F(l)
S2=S2 + F(I+1)
101 CONTINUE

C
S = H*(S1 + 4.*S0 + S2)/3.
C
C If Nis even, add the last slice separately
C

IF(MOD(N,2).EQ.0) S = S + H*(5.*F(N) + 8.*F(N-1) - F(N-2))/12.

WRITE(6,999) S,S*4
STOP
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999 FORMAT (F16.8)
END
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C**********************************************************

ADI : PIH.FOR *
AMAC : MONTE CARLO INTEGRALI UZERINDE *
DENEMELER YAPMAK *
YONTEM : REJECTION YONTEMI (HIT & MISS) *
UYGULAMA : BOYUT SAYISI DEGISEN HIPER KURENIN HACMINI *
BULMA PROBLEMI UZERINE MONTE CARLO *
REDDETME YONTEMINI UYGULAMAK *
kkkkkkkkkkkkkhkkkkkhkkkkhkhkkkkhkhkkkhkhkkkkhkhkkkhkhkkkkhkkkkkkkkkkkkkx
INTEGER BOYUT,BYT,BS,T
REAL  INTEG,TOPINT,X(11),Y,INTG(11),R,RBUL

QO0O0O0O0O0O0O

@

INTEGER SAYAC
INTEGER N(11),M,S,K,L,J,0
REAL  PI,PIG,TOPPI

*kkkkk * *kkkkkkkkk

GERCEK PI DEGERI *

C*************************

PARAMETER (Pl = 3.1415927)

C
C
C
C

C

(; *kkkkk * *kkkkkkkkhk *kkkkk

C CEVRIM DEGERLERI GIRILIYOR *

C**********************************

C********)\'***************************************

C KAC TANE FARKLI ORNEK SAYISI SECILECEK *

C KAC BOYUTLU HIPE KURENIN HACMI HESAPLANACAK *
C BILGISI GIRILIYOR
C****************7\'*****************‘k*‘k**********‘k

C

WRITE(*,*) 'KACINCI BOYUTA KADAR ORNEK DEGERI ALINACAK BOYUT=?"
READ(*,*) BOYUT

WRITE(**) 'KAC FARKLI ORNEK SAYISI KULLANILACAK?'
READ(**) M

DO L=1,M

WRITE(*,*) L,. ORNEK SAYISINI GIRINIZ '
READ(*,*) N(L)

END DO

C
C  WRITE(**) 'KAC DENEME GRUBU TEKRARI YAPILACAK, K=?'
C READ(** K

C****************7\'*****************‘k***)\'********‘k***‘k*****

C VERILEN HER ORNEK SAYISI ICIN 100 TEKRAR YAPILACAK *
C  MONTE CARLO YONTEMINDE BU SAYI 50, 100 GIBI  *

C DEGERLER ALABILIR.

C (MINIMUM SECYLEBYLECEK DEGERI 30'DUR) *

C********)\'*******7\'**************************************)\'*

K =100




C HACMI HESAPLANAN N-BOYUTLU HIPER KURENIN BULUNAN  *

C DEGERLERININ TUTULACAGI OUT DOSYALARI OLUSTURULUYOR *

(: *% **% *% *% *% **% *% *% *% *% *% *% **%
OPEN(UNIT=30,FILE="SONH.DAT")
OPEN(UNIT=35,FILE="SONCIZ.DAT")

C
SAYAC =0
C

(; *kkkkk * *kkkkkkkkhk *kkkkkkkkk

C KURENIN YARICAPI GIRILIYOR *

(:**************************************

R=0.5

*kkkkk * *kkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk *%

HIPER KURE HACMININ, FONKSIYONLARI YARDIMIYLA BULUNAN *
HATA HESABINDA KULLANILACAK HACIM DEGERLERI  *
INTG(1)= 2.
INTG(2)= PI*R**2
INTG(3)= (4./3.)*PI*R**3
INTG(4)= PI**2/2 *R**4
INTG(5)= PI**2*64./120.*R**5
INTG(6)= PI**3/6.*R**6
INTG(7)= PI**3*16./105.*R**7
INTG(8)= PI**4/24.*R**8
INTG(9)= PI**4*32./945 *R**9
INTG(10)= PI**5/120.*R**10
INTG(11)= PI**5*2048./332640.*R**11

QO0O0Q0O

C

(:******************************************************************

C 2.BOYUTTAN ITIBAREN KURENIN HACMI HESAPLANMAYA BASLANIYOR

(; *kkkkk * *kkkkkkkkhk *kkkkkkkkk *kkkkkkkkkkkkhk *kkkkk

DO BYT=2,BOYUT

C
WRITE(*,*) BYT,-BOYUTLU HYPER KURE ICIN ISLEM YAPILIYOR'
d INTG(BYT)
WRITE(30,%) BYT,-BOYUTLU HYPER KURE ICIN ISLEM YAPILIYOR
d INTG(BYT)
C
DO S=1,M
TOPINT = 0.
DOL=1K
SAYAC =0
INTEG =0.
C
DO J = 1,N(S)
Y=0.
DO BS=1,BYT
C

(:*******************************************************

C HER BOYUT ICIN 1-RASGELE SAYILAR URETILIYOR *

(; *kkkkk * *kkkkkkkkk *kkkkkkkkk * *kkkkkkkkk

X(BS)=RAN2(-100)

C
(:******************************************************
C  SECILEN DEGELERE KARSI DUSEN NOKTANIN *
C ORJINE UZAKLIGI SAPLANIYOR *
(: *% *% * *% *% *% *% *% *% * *% *% *
Y=X(BS)**2+Y

ENDDO

C WRITE(**) Y
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RBUL=SQRT(Y)

C

(: *% **% *% *% *% **% *% *% *% *% *% *% **% *% *%

C INTEGRALI ALINAN BOLGENIN ICINDE OLAN NOKTALAR KABUL, *

C DISINDA OLANLAR DEGERLER REDDEDILIYOR *

(:******************************************************************

IF(RBUL .LE. 1.0) SAYAC = SAYAC + 1
ENDDO

INTEG = REAL(SAYAC) / REAL(N(S))
TOPINT = INTEG + TOPINT

ENDDO

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkhhkkkhkkkkkkkkkkkkkkkkhkhkhkhhkhkkkkkkkkx

TOPLAM NOKTA SAYISI ILE KABUL EDILEN NOKTA *
SAYISININ ORANI BULUNUYOR *

*kkkkk * *kkkkkkkkhk *kkkkkkkkhk *kkkkkkkkkkhkhk *kkkkk

TOPINT = TOPINT/REAL(K)

O Q00000 O O O

WRITE(30,55) N(S), K, TOPINT
WRITE(*,55) N(S), K, TOPINT
WRITE(30,56) N(S), TOPINT-INTG(BYT),

d 100.*(TOPINT-INTG(BYT))/INTG(BYT)
WRITE(*,56) N(S), TOPINT-INTG(BYT),
d 100.*(TOPINT-INTG(BYT))/INTG(BYT)

55 FORMAT(I8, ' DENEMENIN '14,' KEZ TEKRARI SONUCUNDA INT =",
F11.8)
56 FORMAT(I8, DENEME SONUCUNDA BULUNAN HACMIN GERCEK DEGERINDEN
SAPMASI ', F11.8,' BUNUN YUZDE DEGERI %',F11.6)
C
WRITE(35,*) N(S), 100.*(TOPINT-INTG(BYT))/INTG(BYT), TOPINT,BYT
C
ENDDO
ENDDO

CLOSE(30)
CLOSE(35)

STOP
END
C

(; *kkkkk * *kkkkkkkkhk *kkkkkkkkk * *kkkkkkkkk *kkkkk

C (0,1) ARASINDA DUZGUN DAGILIMLI RASGELE SAYI URETECI *

(:******************************************************************

(; *kkkkk * *kkkkkkkkk *kkkkkkkkk * *kkkkkkkkk *kkkkk

REAL FUNCTION RAN2(IDUM)
PARAMETER (M=714025,|1A=1366,IC=150889,RM=1.4005112E-6)
DATA IFF /0/
COMMON/DENE/IY,IR(97)
C  WRITE(** IFF
IF(IDUM.LT.0.0OR.IFF.EQ.0)THEN

IFF=1

IDUM=MOD(IC-IDUM,M)

DO 11 J=1,97
IDUM=MOD(IA*IDUM+IC,M)
IR(J)=IDUM

11  CONTINUE

IDUM=MOD(IA*IDUM+IC,M)

IY=IDUM
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ENDIF
C  WRITE(*) IY
J=1+(97*IY)/M
IF(J.GT.97.0R.J.LT.1)PAUSE
IY=IR(J)
RAN2=1Y*RM
IDUM=MOD(IA*IDUM+IC,M)
IR(J)=IDUM
RETURN
END

C***************
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