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Outline of talk

nat are random walks?

nat are self-avoiding walks?

Ny are they interesting?

ny talk about them at the MAV conference?

nat do we know about them?
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What arerandom walks?

o -

o History begins with Karl Pearson (in 1905) attempting to
model random migration of mosquitoes infesting
cleared jungle regions..
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What arerandom walks?

-

o History begins with Karl Pearson (in 1905) attempting to
model random migration of mosquitoes infesting
cleared jungle regions..

# In Nature, on 27 July 1905 Karl Pearson asked A man
starts from a point O and walks [ yards in a straight line;
he then turns through any angle whatever and walks
another [ yards in a second straight line. He repeats
this proces n times. | require the probability that after »
of these stretches he is at a distance between r and
r + or from his starting point.

-
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What arerandom walks?
- -

#® The guestion was answered the following week by Lord
Rayleigh, who pointed out the connection between this
problem and an earlier paper of his (Rayleigh)
published in 1880 concerned with sound vibrations.

Rayleigh pointed out that, for large values of n, the
answer is given by

2 _TQ/”FMT.
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#® The guestion was answered the following week by Lord

What arerandom walks?

-

Rayleigh, who pointed out the connection between this
problem and an earlier paper of his (Rayleigh)
published in 1880 concerned with sound vibrations.
Rayleigh pointed out that, for large values of n, the
answer is given by

2 _TQ/”FMT.

# You'll recognise this as having the shape of a normal

distribution, centred at the origin.
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Thefollowing week:
-

f # In Nature, on 10 August 1905 Karl Pearson wrote, in
relation to Rayleigh’s letter and reference to his earlier
work: | ought to have known it, but my reading of late
years has drifted into other channels, and one does not
expect to find the first stage of a biometric problem
provided in a memoir on sound. He went on to
comment on the solution:
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Thefollowing week:
-

f # In Nature, on 10 August 1905 Karl Pearson wrote, in
relation to Rayleigh’s letter and reference to his earlier
work: | ought to have known it, but my reading of late
years has drifted into other channels, and one does not
expect to find the first stage of a biometric problem
provided in a memoir on sound. He went on to
comment on the solution:

#® The lesson of Lord Rayleigh’s solution is that in open
country the most probable place of finding a drunken
man who is at all capable of keeping on his feet is
somewhere near his starting point.
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L essons from Rayleigh:

o -

# This is still quite a difficult problem, but it is instructive to
look at how great mathematicians tackle such
problems.
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f # This is still quite a difficult problem, but it is instructive toT
look at how great mathematicians tackle such problems.

# Rayleigh first solved the one-dimensional problem,

where the walker can only go forward or backward. This
IS equivalent to coin-tossing.
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# This is still quite a difficult problem, but it is instructive to
look at how great mathematicians tackle such problems.

# Rayleigh first solved the one-dimensional problem,
where the walker can only go forward or backward. This
IS equivalent to coin-tossing.

# Then he solved the more difficult case when n /2 steps
are in the x direction, and n/2 steps are in the y
direction.
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L essons from Rayleigh:

-

This is still quite a difficult problem, but it is instructive to
look at how great mathematicians tackle such problems.

Rayleigh first solved the one-dimensional problem,
where the walker can only go forward or backward. This
IS equivalent to coin-tossing.

Then he solved the more difficult case when n /2 steps
are in the x direction, and n/2 steps are in the y
direction.

Finally, he removes this restriction and produces the
required result.
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Further developments.

o N

# Near the end of his life, Rayleigh returned to this
problem, but this time in three-dimensions, a problem
called random flight.
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Further developments.

o N

# Near the end of his life, Rayleigh returned to this
problem, but this time in three-dimensions, a problem
called random flight.

# Just as Pearson missed Rayleigh’s work, Rayleigh
missed Smoluchowski’s 1906 paper on the motion of
colloidal particles, in which he introduces the random

flight idea.
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Further developments.

f # Near the end of his life, Rayleigh returned to this T
problem, but this time in three-dimensions, a problem
called random flight.

# Just as Pearson missed Rayleigh’s work, Rayleigh
missed Smoluchowski’s 1906 paper on the motion of
colloidal particles, in which he introduces the random

flight idea.

# In the 1980s this problem was revived as a model for
the travelling of micro-organisms possessing flagella.
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Random walks on a lattice

o N

# In 1919-21 the lattice random walk or Polya walk was
introduced by George Polya.
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Random walks on a lattice

o N

# In 1919-21 the lattice random walk or Polya walk was
introduced by George Polya.

# Here, a random walker moves on a regular grid, usually
taken to be the hyper-cubic lattice.

Figure 1: 1 and 2 dimensional hypercubic lattices
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Random walks on a lattice

-

f # In 1919-21 the lattice random walk or Polya walk was
introduced by George Polya.

# Here, a random walker moves on a regular grid, usually
taken to be the hyper-cubic lattice.

—0

Figure 1: 1 and 2 dimensional hypercubic lattices
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Random walks on a lattice

o N

# In 1919-21 the lattice random walk or Polya walk was
introduced by George Polya.

# Here, a random walker moves on a regular grid, usually
taken to be the hyper-cubic lattice.

— O—

Figure 1: 1 and 2 dimensional hypercubic lattices
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Random walks on a lattice
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# A 3 dimensional hypercubic lattice:
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Random walks on a lattice

-

# A 3 dimensional hypercubic lattice:

il P P 7

#® On a (2d) square grid, the walker moves N, S, E or W
with probability 1/4, and in general, on a d-dimensional
lattice, the walker moves in one of the 2d possible
directions with equal probability 1/2d. Hence the
number of possible n step random walks is ¢,, = (2d)".
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Random walks on a lattice

-

# The first question Polya asked is: Will such a random T
walker return to the origin as the number of steps grows
without bound?
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Random walks on a lattice

-

# The first question Polya asked is: Will such a random T
walker return to the origin as the number of steps grows
without bound?

#® Surprisingly—or at least, non-obviously—the answer is
yes ford =1 and d = 2, but no for d > 3.
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Proof for d = 1.

o N

# We are now considering random walks on the number
line, starting at “0”.



Proof for d = 1.
| -

# We are now considering random walks on the number
line, starting at “0”.

# We seek R, the probabillity that the walker returns to the
origin after an unbounded number of steps.

o |

Random and self-avoiding walks — p.11/39



Proof for d = 1.
| -

# We are now considering random walks on the number
line, starting at “0”.

# We seek R, the probabillity that the walker returns to the
origin after an unbounded number of steps.

#® The first step is to the left or to the right with equal
probabillity. Let's assume it is to the right, hence to “1".
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Proof for d = 1.
-

We are now considering random walks on the number
line, starting at “0”.

We seek R, the probabillity that the walker returns to the
origin after an unbounded number of steps.

The first step is to the left or to the right with equal
probabillity. Let's assume it is to the right, hence to “1".

Then the next step Is either back to the origin (with
probability 1/2), or to “2”, also with probability 1/2.
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Proof for d = 1.
-

We are now considering random walks on the number
line, starting at “0”.

We seek R, the probabillity that the walker returns to the
origin after an unbounded number of steps.

The first step is to the left or to the right with equal
probabillity. Let's assume it is to the right, hence to “1".

Then the next step Is either back to the origin (with
probability 1/2), or to “2”, also with probability 1/2.

In the latter case, the walker must return to “1” before
he/she can return to “0”. The walker, upon returning to
“1", can then go to “0” or move off to the right again.
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# Note that the probability of returning to “1” is also
R—the same as the probabillity of returning to “0”, as
we are on an infinite number line.
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o N

# Note that the probability of returning to “1” is also
R—the same as the probabillity of returning to “0”, as
we are on an infinite number line.

# The probability of going right from “1” and then returning
IS R/2, where the 1/2 factor comes from the fact that the
probability of the first step to the right is 1/2.
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# Note that the probability of returning to “1” is also
R—the same as the probabillity of returning to “0”, as
we are on an infinite number line.

# The probability of going right from “1” and then
returning iIs R/2, where the 1/2 factor comes from the
fact that the probability of the first step to the right is 1/2.

# Similarly, the probability of going right from “1” m times
and returning to “1” (without ever visiting “0”) is R /2™,
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Note that the probability of returning to “1” is also T

R—the same as the probabillity of returning to “0”, as
we are on an infinite number line.

The probability of going right from “1” and then
returning iIs R/2, where the 1/2 factor comes from the
fact that the probability of the first step to the right is 1/2.

Similarly, the probability of going right from “1” m times
and returning to “1” (without ever visiting “0”) is R™ /2™.
It follows that

1 1 1, R?
R=g+ R+ R+ 4 oy
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Proof for d = 1 continued.

-

#® Repeating,

1 1 1, R?
R=g+ R+ g+ 4 oo




Proof for d = 1 continued.

o N

#® Repeating,

1 1 1, R?
R=g+ R+ g+ 4 oo

# This Is just a geometric series, summing which gives

2R = 1_}%/2. Cross-multiplying gives 2R(1 — R/2) =1 or

R?-2R+1=(R—-1)?=0.
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Proof for d = 1 continued.
f #® Repeating, T

1 1 1, R?
R=g+ R+ g+ 4 oo

# This Is just a geometric series, summing which gives
2R = 1_}%/2. Cross-multiplying gives 2R(1 — R/2) =1 or
R?-2R+1=(R—-1)?=0.

# This has the unigue solution R = 1.

o |

Random and self-avoiding walks — p.13/39



Proof for d = 1 continued.

Repeating,

1 1 1, R?
R=g+ R+ g+ 4 oo

This Is just a geometric series, summing which gives

2R = 1_}%/2. Cross-multiplying gives 2R(1 — R/2) =1 or
R?-2R+1=(R—-1)?=0.

This has the unique solution R = 1.

Thus the walker will return absolutely certainly to the
origin.
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Proof for d = 1 continued.

Repeating,

1 1 1, R?
R=g+ R+ g+ 4 oo

This Is just a geometric series, summing which gives

2R = 1_}%/2. Cross-multiplying gives 2R(1 — R/2) =1 or
R?-2R+1=(R—-1)?=0.

This has the unique solution R = 1.

Thus the walker will return absolutely certainly to the
origin.

In three dimensions the probability of return is given by
a very difficult integral. It evaluates to 0.340537...
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Nasty integral

p3=1—1/ms.



Nasty integral

p3=1—1/ms.

d@dgbdw

o) J_x 1 —cos(f) — cos(

¢) — cos(y))



Nasty integral

p3=1—1/ms.

oy | L e o=

#® This took 37 years to get into “simple” closed form:

msz —

1
\/EF F3F5 7

= — )I'(—)I'(=——=) = 1.5163860591 - - -
3273 (24) (24) (24) (24)

ms3
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Other properties.

o N

#® There are many other properties of interest.



Other properties.
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# The mean number of steps taken for return to the origin.

#® There are many other properties of interest.
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Other properties.
f #® There are many other properties of interest. T
# The mean number of steps taken for return to the origin.

# Remarkably, and counter-intuitively, this is infinite in
d=1and 2.
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Other properties.
-

The mean number of steps taken for return to the origin.

There are many other properties of interest.

Remarkably, and counter-intuitively, this is infinite in
d=1and 2.

One can ask how far from the origin is the end-point of
an n-step walker. This is easier. (R?),, = n. So the “size”
grows like \/n.
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Other properties.
-

The mean number of steps taken for return to the origin.

There are many other properties of interest.

Remarkably, and counter-intuitively, this is infinite in
d=1and 2.

One can ask how far from the origin is the end-point of

an n-step walker. This is easier. (R?),, = n. So the “size”
grows like \/n.

One traditionally writes (R?),, = n*¥,so v = 1/2.
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Other properties.
-

The mean number of steps taken for return to the origin.

There are many other properties of interest.

Remarkably, and counter-intuitively, this is infinite in
d=1and 2.

One can ask how far from the origin is the end-point of
an n-step walker. This is easier. (R?),, = n. So the “size”
grows like \/n.

One traditionally writes (R?),, = n*¥,so v = 1/2.

There is a close connection between random walks and
Brownian motion.
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Other properties.
-

The mean number of steps taken for return to the origin.

There are many other properties of interest.

Remarkably, and counter-intuitively, this is infinite in
d=1and 2.

One can ask how far from the origin is the end-point of
an n-step walker. This is easier. (R?),, = n. So the “size”
grows like \/n.

One traditionally writes (R?),, = n*¥,so v = 1/2.

There is a close connection between random walks and
Brownian motion.

Note that walks have no history. The next step depends
only on the walker’s current position. Such a process iSJ
called a Markov process.
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Self-avoiding walks and polygons.

o N

® A SAW is a lattice random walk with one additional
condition. No site may be revisited.



Self-avoiding walks and polygons.

o N

® A SAW is a lattice random walk with one additional
condition. No site may be revisited.

Figure 2: A two-dim. SAW on two different scales
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® A SAW is a lattice random walk with one additional
condition. No site may be revisited.

Figure 2: A two-dim. SAW on two different scales
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# This seemingly small change dramatically increases the
difficulty of the problem.



Self-avoiding walks and polygons.

f # This seemingly small change dramatically increases theT
difficulty of the problem.

# In one dimension the problem becomes trivial. In two or
more dimensions it becomes so difficult that it has
never been solved.
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Self-avoiding walks and polygons.
B -

# This seemingly small change dramatically increases the
difficulty of the problem.

# In one dimension the problem becomes trivial. In two or
more dimensions it becomes so difficult that it has
never been solved.

# The questions we want to answer include the following:
How many n-step SAW are there? How big are they?
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Self-avoiding walks and polygons.

-

# This seemingly small change dramatically increases the
difficulty of the problem.

# In one dimension the problem becomes trivial. In two or
more dimensions it becomes so difficult that it has
never been solved.

# The questions we want to answer include the following:
How many n-step SAW are there? How big are they?

# The difficulty relates to the fact that we have (for d > 1)
lost the Markovian property.
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Self-avoiding polygons

o N

o Self-avoiding polygons (SAP) are SAW whose last
monomer (site) is adjacent to the first.



Self-avoiding polygons

o N

o Self-avoiding polygons (SAP) are SAW whose last
monomer (site) is adjacent to the first.



Self-avoiding walks and polygons.

o N

Self-avoiding walks and polygons are paradigms of
problems in combinatorics.

Their study encompasses a surprisingly broad range of
areas of mathematics, biology, chemistry and physics:

# macromolecules in biology, RNA, DNA, proteins
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Self-avoiding walks and polygons are paradigms of
problems in combinatorics.

Their study encompasses a surprisingly broad range of
areas of mathematics, biology, chemistry and physics:

# macromolecules in biology, RNA, DNA, proteins
# numerical analysis and computing
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Self-avoiding walks and polygons.

o N

Self-avoiding walks and polygons are paradigms of
problems in combinatorics.

Their study encompasses a surprisingly broad range of
areas of mathematics, biology, chemistry and physics:

# macromolecules in biology, RNA, DNA, proteins
# numerical analysis and computing
# algorithm design,
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Self-avoiding walks and polygons.
B -

Self-avoiding walks and polygons are paradigms of
problems in combinatorics.

Their study encompasses a surprisingly broad range of
areas of mathematics, biology, chemistry and physics:

macromolecules in biology, RNA, DNA, proteins

o
# numerical analysis and computing
# algorithm design,

o

functional analysis,
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Self-avoiding walks and polygons.
B -

Self-avoiding walks and polygons are paradigms of
problems in combinatorics.

Their study encompasses a surprisingly broad range of
areas of mathematics, biology, chemistry and physics:

macromolecules in biology, RNA, DNA, proteins
numerical analysis and computing

algorithm design,
functional analysis,
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knot theory,
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Self-avoiding walks and polygons.

o N

Self-avoiding walks and polygons are paradigms of
problems in combinatorics.

Their study encompasses a surprisingly broad range of
areas of mathematics, biology, chemistry and physics:

macromolecules in biology, RNA, DNA, proteins
numerical analysis and computing

algorithm design,

functional analysis,

knot theory,

© o o o o 0

discrete mathematics,
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Self-avoiding walks and polygons.

o N

Self-avoiding walks and polygons are paradigms of
problems in combinatorics.

Their study encompasses a surprisingly broad range of
areas of mathematics, biology, chemistry and physics:

macromolecules in biology, RNA, DNA, proteins
numerical analysis and computing

algorithm design,

functional analysis,

knot theory,

discrete mathematics,
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Markov process theory,
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Self-avoiding walks and polygons.

o N

Self-avoiding walks and polygons are paradigms of
problems in combinatorics.

Their study encompasses a surprisingly broad range of
areas of mathematics, biology, chemistry and physics:

macromolecules in biology, RNA, DNA, proteins

numerical analysis and computing

algorithm design,

functional analysis,

knot theory,

discrete mathematics,

Markov process theory,

number theory J

Random and self-avoiding walks — p.19/39
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Why theinterest in SAW?
-

# They obviously have considerable intrinsic
mathematical interest.



Why theinterest in SAW?
- -

# They obviously have considerable intrinsic
mathematical interest.

# In the Encylopaedia Britannica they are given as one of
two classical combinatorial problems

o |

Random and self-avoiding walks — p.20/39



Why theinterest in SAW?
-

# They obviously have considerable intrinsic T
mathematical interest.

# In the Encylopaedia Britannica they are given as one of
two classical combinatorial problems

#® They are the most elementary, realistic mathematical
model of long-chain polymers in dilute solution.

o |

Random and self-avoiding walks — p.20/39



Why theinterest in SAW?
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They obviously have considerable intrinsic
mathematical interest.

In the Encylopaedia Britannica they are given as one of
two classical combinatorial problems

They are the most elementary, realistic mathematical
model of long-chain polymers in dilute solution.

All life is made of polymers (DNA, RNA etc.)

|

Random and self-avoiding walks — p.20/39



°

Why theinterest in SAW?
-

They obviously have considerable intrinsic
mathematical interest.

In the Encylopaedia Britannica they are given as one of
two classical combinatorial problems

They are the most elementary, realistic mathematical
model of long-chain polymers in dilute solution.

All life is made of polymers (DNA, RNA etc.)

Much of the world’s industry is either involved with, or
relies on polymers.
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Why theinterest in SAW?
-

They obviously have considerable intrinsic
mathematical interest.

In the Encylopaedia Britannica they are given as one of
two classical combinatorial problems

They are the most elementary, realistic mathematical
model of long-chain polymers in dilute solution.

All life is made of polymers (DNA, RNA etc.)

Much of the world’s industry is either involved with, or
relies on polymers.

Examples range from paint to polyethylene.
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What is a polymer?

o -

# Polymers are long chain molecules consisting of a large
number of monomers held together by chemical bonds.

o |

Random and self-avoiding walks — p.21/39



What is a polymer?

o -

# Polymers are long chain molecules consisting of a large
number of monomers held together by chemical bonds.

#® Those made of identical units are called homopolymers,
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What is a polymer?

f # Polymers are long chain molecules consisting of a IargeT
number of monomers held together by chemical bonds.

#® Those made of identical units are called homopolymers,

® Those made of more than one unit are called
heteropolymers or copolymers.
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What is a polymer?
-

Polymers are long chain molecules consisting of a large
number of monomers held together by chemical bonds.

Those made of identical units are called homopolymers,

Those made of more than one unit are called
heteropolymers or copolymers.

Chemists are traditionally interested in local properties,
notably the specific chemical properties, while
physicists are interested in the global properties, and
mathematicians are interested in exact solutions, or
proving properties that the solution must satisfy, even if
we can’t find it.
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From polymersto SAW

o N

# As chemical bond angles are fixed, we consider lattice
models of polymers.



From polymersto SAW
- -

# As chemical bond angles are fixed, we consider lattice
models of polymers.

o Universality implies that, for global properties, the
precise lattice doesn’t matter.
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From polymersto SAW

o N

# As chemical bond angles are fixed, we consider lattice
models of polymers.

o Universality implies that, for global properties, the
precise lattice doesn’t matter.

# The idealisation as random or more usually
self-avoiding walks on a lattice has become ubiquitous.
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From polymersto SAW
-

As chemical bond angles are fixed, we consider lattice
models of polymers.

Universality implies that, for global properties, the
precise lattice doesn’t matter.

The idealisation as random or more usually
self-avoiding walks on a lattice has become ubiquitous.

The self-avoiding property reflects the fact that two
monomers cannot occupy the same point in space.
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From polymersto SAW
-

As chemical bond angles are fixed, we consider lattice
models of polymers.

Universality implies that, for global properties, the
precise lattice doesn’t matter.

The idealisation as random or more usually
self-avoiding walks on a lattice has become ubiquitous.

The self-avoiding property reflects the fact that two
monomers cannot occupy the same point in space.

The measure of a polymer is given by properties such
as the number of monomers (its length), or the average
distance from one end to the other.
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Models of polymers
-

# The ubiquitous polymer model is the SAW.



Models of polymers

o N

# The ubiquitous polymer model is the SAW.

# |t can be defined as a connected path on a lattice such
that no site, once visited, is revisited. We'll largely
consider SAW on a square or hexagonal grid.
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# |t can be defined as a connected path on a lattice such
that no site, once visited, is revisited. We'll largely
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Models of polymers

o N

# The ubiquitous polymer model is the SAW.

# |t can be defined as a connected path on a lattice such
that no site, once visited, is revisited. We'll largely
consider SAW on a square or hexagonal grid.

# Unfortunately it is trivial in one dimension, and unsolved
In higher dimensions.
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What 1sa SAW?

o N

#® Remember the definition: A connected path on a lattice
such that no site, once visited, Is revisited.
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such that no site, once visited, Is revisited.

#® Let ¢, denotes the number of n-step SAW (equivalent
up to a translation).

o |

Random and self-avoiding walks — p.24/39



What 1sa SAW?
-

Remember the definition: A connected path on a lattice
such that no site, once visited, Is revisited.

Let ¢, denotes the number of n-step SAW (equivalent
up to a translation).

On the square grid, clearly ¢; = 4, ¢ = 12 and ¢3 = 36.
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What 1sa SAW?
-

Remember the definition: A connected path on a lattice
such that no site, once visited, Is revisited.

Let ¢, denotes the number of n-step SAW (equivalent
up to a translation).

On the square grid, clearly ¢; = 4, ¢ = 12 and ¢3 = 36.

cs = 100 rather than 108 as SAW constraint first enters.

|
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® SAWSs can self-trap in any dimension d > 1.
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-

® 8 such walks self-intersect.

mw@

#® SAWSs can self-trap in any dimension d > 1.

# On the square lattice, the mean number of steps of a
self-trapping walk is about 71.
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History
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# History begins in mid '40s. Paper by Orr (1947).
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# History begins in mid '40s. Paper by Orr (1947).
# Remarkably little can be proved.
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# Hammersley and Morton (’54) proved, loosely speaking,
that the number of n-step SAW grows like ..
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History
History begins in mid '40s. Paper by Orr (1947). T
Remarkably little can be proved.

Hammersley and Morton (’54) proved, loosely
speaking, that the number of n-step SAW grows like 1.

1 Is called the connective constant. It is the average no.
of available steps for an infinitely long walk.

|

Random and self-avoiding walks — p.26/39



L

History
History begins in mid '40s. Paper by Orr (1947). T
Remarkably little can be proved.

Hammersley and Morton (’54) proved, loosely
speaking, that the number of n-step SAW grows like 1.

1 Is called the connective constant. It is the average no.
of available steps for an infinitely long walk.

Recall, on a square grid, for random walks, ¢,, = 4".
Hence Wrandom = 4-
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History
History begins in mid '40s. Paper by Orr (1947). T
Remarkably little can be proved.

Hammersley and Morton (’54) proved, loosely
speaking, that the number of n-step SAW grows like 1.

1 Is called the connective constant. It is the average no.
of available steps for an infinitely long walk.

Recall, on a square grid, for random walks, ¢,, = 4".
Hence Wrandom = 4-

If we forbid immediate reversals, ¢, =4 x 3!, so
Uno—reversal = S 1N that case.

|
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Values of 1

o N

An argument due to Nienhuis ('82) yields

up = V2 + /2 ~ 1.8477.. for SAWSs on the hexagonal lattice.
(Here, Urand. = 3, and Hno—rev. = 2-)
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Values of 1

o N

An argument due to Nienhuis ('82) yields

up = V2 + /2 ~ 1.8477.. for SAWSs on the hexagonal lattice.
(Here, Urand. = 3, and Hno—rev. = 2-)

Status: Universally believed, but not proved.

o |

Random and self-avoiding walks — p.27/39



Propertiesrelating to number and size
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® Though not proved, it is believed that ¢,, oc x*n7~ 1.
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Propertiesrelating to number and size
f ® Though not proved, it is believed that c,, oc p"n7 1. T
# In two dimensions it is believed that v = 43/32.

# Remarkably, while ¢ varies from lattice to lattice, ~ Is
believed to be fixed (given the lattice dimensionality).
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Propertiesrelating to number and size

-

o o

B

Though not proved, it is believed that c,, o 1"n?~1.
In two dimensions it is believed that v = 43/32.

Remarkably, while ;. varies from lattice to lattice, v Is
believed to be fixed (given the lattice dimensionality).

Similarly, the average, over all n-step walks, of the
square of the end-to-end distance, denoted (R?),, o« n?.
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Though not proved, it is believed that c,, o 1"n?~1.
In two dimensions it is believed that v = 43/32.

Remarkably, while ;. varies from lattice to lattice, v Is
believed to be fixed (given the lattice dimensionality).

Similarly, the average, over all n-step walks, of the
square of the end-to-end distance, denoted (R?),, o« n?.
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Propertiesrelating to number and size

-

o o

B

Though not proved, it is believed that c,, o 1"n?~1.
In two dimensions it is believed that v = 43/32.

Remarkably, while ;. varies from lattice to lattice, v Is
believed to be fixed (given the lattice dimensionality).

Similarly, the average, over all n-step walks, of the
square of the end-to-end distance, denoted (R?),, o« n?.

1

This measures the size of a SAW. Like v, v Is also
lattice independent. J
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Size exponent v.

-

o Recall that v = 1/2 for random walks.



Size exponent v.

-

o Recall that v = 1/2 for random walks.
# For (two-dimensional) SAW, v = 3/4.
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Size exponent v.
f o Recall that v = 1/2 for random walks. T
# For (two-dimensional) SAW, v = 3/4.

# This is intuitively reasonable. The SAW constraint
causes the walk to “spread out.”
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What other propertiescan we study?

o N

# This lattice idealisation allows many systems beyond
polymers in dilute solution to be investigated.
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# This lattice idealisation allows many systems beyond
polymers in dilute solution to be investigated.

# Monomer-monomer interactions can be included,
allowing collapse transitions to be investigated.
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# This lattice idealisation allows many systems beyond
polymers in dilute solution to be investigated.

# Monomer-monomer interactions can be included,
allowing collapse transitions to be investigated.

® Monomer-wall interactions allow surface interactions to
be studied.
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What other propertiescan we study?

o N

# This lattice idealisation allows many systems beyond
polymers in dilute solution to be investigated.

# Monomer-monomer interactions can be included,
allowing collapse transitions to be investigated.

® Monomer-wall interactions allow surface interactions to
be studied.

# We usually ask how the size varies with these

L Interactions. J
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Biological molecules are polymers

o N

# Biological molecules like DNA, RNA, and proteins are
all polymers.



Biological molecules are polymers

f # Biological molecules like DNA, RNA, and proteins are T
all polymers.

o Properties of DNA such as denaturation, folding and
stretching can all be modelled by such lattice models.
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Biological molecules are polymers

f # Biological molecules like DNA, RNA, and proteins are T
all polymers.

o Properties of DNA such as denaturation, folding and
stretching can all be modelled by such lattice models.

Figure 3. Schematic representation of denatured chain

Lstructure J
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Self-avoiding polygons
-

# Applications of SAP are equally rich.



Self-avoiding polygons
f # Applications of SAP are equally rich. T

#® Because they enclose an area or volume, we can study

pressure induced phenomena, which occur in biological
molecules.
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Self-avoiding polygons

f # Applications of SAP are equally rich. T

#® Because they enclose an area or volume, we can study

pressure induced phenomena, which occur in biological
molecules.

# The fact that we are dealing with loops means the
concept of knottedness can be studied. The theory of

knots in polymers is an important and active subject in
Its own right.
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Knots

o N

There is a lot of literature devoted to knotted walks and
polygons. These model knots in polymers, and in particular
DNA. Here is a trefoil in three-dimensional space.
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Counting

o N

# There Is a big effort by many scientists in efficiently
counting the number ¢,, of n-step SAW.

o |

Random and self-avoiding walks — p.34/39



Counting

o N
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counting the number ¢,, of n-step SAW.

#® The problem is that, as we’ve proved, ¢,, increases like
u" =~ 2.64" for the square lattice.
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# There Is a big effort by many scientists in efficiently
counting the number ¢,, of n-step SAW.

#® The problem is that, as we’ve proved, ¢,, increases like
u" =~ 2.64" for the square lattice.

#® The current record is that walks up to 71 steps have
been counted.
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Counting

-

There is a big effort by many scientists in efficiently
counting the number ¢,, of n-step SAW.

The problem is that, as we’ve proved, ¢, Increases like
u" =~ 2.64" for the square lattice.

The current record is that walks up to 71 steps have
been counted.

Now, 2.6471 ~ 1030. A fast computer can count 107 or, at
best, 10° walks per minute.
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There is a big effort by many scientists in efficiently
counting the number ¢,, of n-step SAW.

The problem is that, as we’ve proved, ¢, Increases like
u" =~ 2.64" for the square lattice.

The current record is that walks up to 71 steps have
been counted.

Now, 2.6471 ~ 1030. A fast computer can count 107 or, at
best, 10° walks per minute.

So counting 71 step walks would take 10%? minutes.
Assume there are 10° computers on the planet.
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Counting

-

There is a big effort by many scientists in efficiently
counting the number ¢,, of n-step SAW.

The problem is that, as we’ve proved, ¢, Increases like
u" =~ 2.64" for the square lattice.

The current record is that walks up to 71 steps have
been counted.

Now, 2.6471 ~ 1030. A fast computer can count 107 or, at
best, 10° walks per minute.

So counting 71 step walks would take 10%? minutes.
Assume there are 10° computers on the planet.

This would then take 10'® minutes, using all the world’s
computing resources, or 20 million years!

|
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Counting

o N

# We wish to devise algorithms that work faster than
direct counting.
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direct counting.

® Trick is to work on a finite lattice.

# The FLM, was first suggested by Tom de Neef, and
proved to be valid by lan Enting ("70s).
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We wish to devise algorithms that work faster than
direct counting.

Trick 1s to work on a finite lattice.

The FLM, was first suggested by Tom de Neef, and
proved to be valid by lan Enting ("70s).

With a finite lattice, we can use a transfer matrix.
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o N

# Loosely speaking, if we keep track of all possibilities to
the left of the line, we can join them uniquely to all
possibilities to the right, with the same boundaries.
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# This turns out to be computationally vastly more
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# Loosely speaking, if we keep track of all possibilities to
the left of the line, we can join them uniquely to all
possibilities to the right, with the same boundaries.

# This turns out to be computationally vastly more
efficient.

# Over the years the team at Melbourne University have
refined and improved this method.
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Loosely speaking, if we keep track of all possibilities to
the left of the line, we can join them uniquely to all
possibilities to the right, with the same boundaries.

This turns out to be computationally vastly more
efficient.

Over the years the team at Melbourne University have
refined and improved this method.

Currently Jensen’s best algorithm for counting SAP
takes time « (1.2)", compared to direct counting, which
takes time « 2.64™.
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Loosely speaking, if we keep track of all possibilities to
the left of the line, we can join them uniquely to all
possibilities to the right, with the same boundaries.

This turns out to be computationally vastly more
efficient.

Over the years the team at Melbourne University have
refined and improved this method.

Currently Jensen’s best algorithm for counting SAP
takes time « (1.2)", compared to direct counting, which
takes time « 2.64™.

The FLM plus TM Is the best way to enumerate lattice
objects in two dimensions. Works in higher dimension,
but implementation is difficult J
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Outlook

o N

# In this talk | have given a rushed overview of some of

the results, and some of the problems of interest in this
field.
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# In this talk | have given a rushed overview of some of
the results, and some of the problems of interest in this

field.

# While focussing on SAWSs, many of the problems, ideas,
and results are applicable to many other problems in
enumerative combinatorics, mathematical physics,
biology and theoretical chemistry.
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Outlook
-

In this talk | have given a rushed overview of some of
the results, and some of the problems of interest in this

field.

While focussing on SAWs, many of the problems, ideas,
and results are applicable to many other problems in
enumerative combinatorics, mathematical physics,
biology and theoretical chemistry.

The problems are sufficiently simple that they can be
readily grasped by a bright school student.

The non-technical nature of the problems means that
there is scope for a non-professional mathematician to
come up with an important idea.
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References

o .

# Students need a good grounding in mathematics if they
are going to contribute to modern science, almost
Irrespective of discipline.
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The End/FIin
-

Thank you for your attention.
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