

Random and self-avoiding walks

Tony Guttmann

Art work: Richard Brak, Andrew Rechnitzer

Department of Mathematics and Statistics, The University of Melbourne

Outline of talk

- What are random walks?

Outline of talk

- What are random walks?
- What are self-avoiding walks?

Outline of talk

- What are random walks?
- What are self-avoiding walks?
- Why are they interesting?

Outline of talk

- What are random walks?
- What are self-avoiding walks?
- Why are they interesting?
- Why talk about them at the MAV conference?

Outline of talk

- What are random walks?
- What are self-avoiding walks?
- Why are they interesting?
- Why talk about them at the MAV conference?
- What do we know about them?

What are random walks?

- History begins with Karl Pearson (in 1905) attempting to model random migration of mosquitoes infesting cleared jungle regions..

What are random walks?

- History begins with Karl Pearson (in 1905) attempting to model random migration of mosquitoes infesting cleared jungle regions..
- In *Nature*, on 27 July 1905 Karl Pearson asked *A man starts from a point O and walks l yards in a straight line; he then turns through any angle whatever and walks another l yards in a second straight line. He repeats this process n times. I require the probability that after n of these stretches he is at a distance between r and $r + \delta r$ from his starting point.*

What are random walks?

- The question was answered the following week by Lord Rayleigh, who pointed out the connection between this problem and an earlier paper of his (Rayleigh) published in 1880 concerned with sound vibrations. Rayleigh pointed out that, for large values of n , the answer is given by

$$\frac{2}{nl^2} e^{-r^2/nl^2} r \delta r.$$

What are random walks?

- The question was answered the following week by Lord Rayleigh, who pointed out the connection between this problem and an earlier paper of his (Rayleigh) published in 1880 concerned with sound vibrations. Rayleigh pointed out that, for large values of n , the answer is given by

$$\frac{2}{nl^2} e^{-r^2/nl^2} r \delta r.$$

- You'll recognise this as having the shape of a normal distribution, centred at the origin.

The following week:

- In *Nature*, on 10 August 1905 Karl Pearson wrote, in relation to Rayleigh's letter and reference to his earlier work: *I ought to have known it, but my reading of late years has drifted into other channels, and one does not expect to find the first stage of a biometric problem provided in a memoir on sound.* He went on to comment on the solution:

The following week:

- In *Nature*, on 10 August 1905 Karl Pearson wrote, in relation to Rayleigh's letter and reference to his earlier work: *I ought to have known it, but my reading of late years has drifted into other channels, and one does not expect to find the first stage of a biometric problem provided in a memoir on sound.* He went on to comment on the solution:
- *The lesson of Lord Rayleigh's solution is that in open country the most probable place of finding a drunken man who is at all capable of keeping on his feet is somewhere near his starting point.*

Lessons from Rayleigh:

- This is still quite a difficult problem, but it is instructive to look at how great mathematicians tackle such problems.

Lessons from Rayleigh:

- This is still quite a difficult problem, but it is instructive to look at how great mathematicians tackle such problems.
- Rayleigh first solved the one-dimensional problem, where the walker can only go forward or backward. This is equivalent to coin-tossing.

Lessons from Rayleigh:

- This is still quite a difficult problem, but it is instructive to look at how great mathematicians tackle such problems.
- Rayleigh first solved the one-dimensional problem, where the walker can only go forward or backward. This is equivalent to coin-tossing.
- Then he solved the more difficult case when $n/2$ steps are in the x direction, and $n/2$ steps are in the y direction.

Lessons from Rayleigh:

- This is still quite a difficult problem, but it is instructive to look at how great mathematicians tackle such problems.
- Rayleigh first solved the one-dimensional problem, where the walker can only go forward or backward. This is equivalent to coin-tossing.
- Then he solved the more difficult case when $n/2$ steps are in the x direction, and $n/2$ steps are in the y direction.
- Finally, he removes this restriction and produces the required result.

Further developments:

- Near the end of his life, Rayleigh returned to this problem, but this time in three-dimensions, a problem called *random flight*.

Further developments:

- Near the end of his life, Rayleigh returned to this problem, but this time in three-dimensions, a problem called *random flight*.
- Just as Pearson missed Rayleigh's work, Rayleigh missed Smoluchowski's 1906 paper on the motion of colloidal particles, in which he introduces the random flight idea.

Further developments:

- Near the end of his life, Rayleigh returned to this problem, but this time in three-dimensions, a problem called *random flight*.
- Just as Pearson missed Rayleigh's work, Rayleigh missed Smoluchowski's 1906 paper on the motion of colloidal particles, in which he introduces the random flight idea.
- In the 1980s this problem was revived as a model for the travelling of micro-organisms possessing flagella.

Random walks on a lattice

- In 1919-21 the *lattice random walk* or *Pólya walk* was introduced by George Pólya.

Random walks on a lattice

- In 1919-21 the *lattice random walk* or *Pólya walk* was introduced by George Pólya.
- Here, a random walker moves on a regular grid, usually taken to be the *hyper-cubic lattice*.

Figure 1: 1 and 2 dimensional hypercubic lattices

Random walks on a lattice

- In 1919-21 the *lattice random walk* or *Pólya walk* was introduced by George Pólya.
- Here, a random walker moves on a regular grid, usually taken to be the *hyper-cubic lattice*.

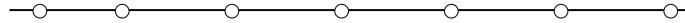


Figure 1: 1 and 2 dimensional hypercubic lattices

Random walks on a lattice

- In 1919-21 the *lattice random walk* or *Pólya walk* was introduced by George Pólya.
- Here, a random walker moves on a regular grid, usually taken to be the *hyper-cubic lattice*.

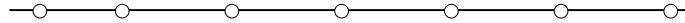
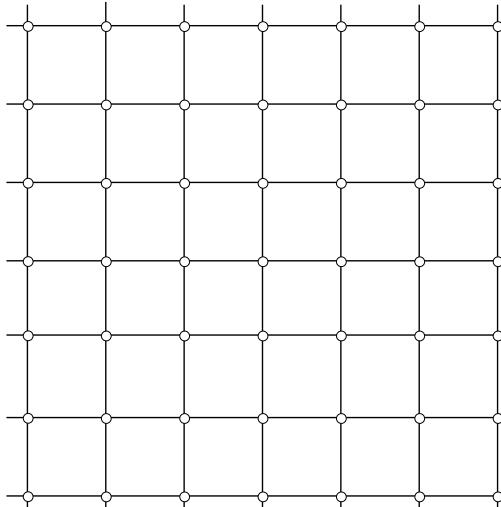


Figure 1: 1 and 2 dimensional hypercubic lattices

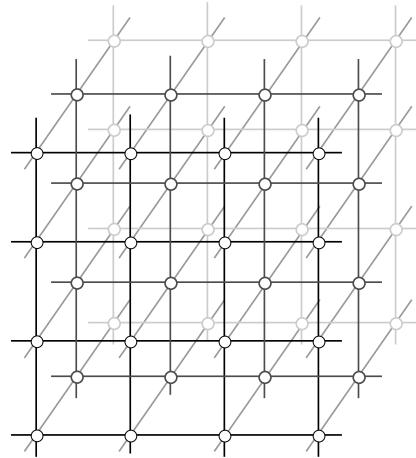


Random walks on a lattice

- A 3 dimensional hypercubic lattice:

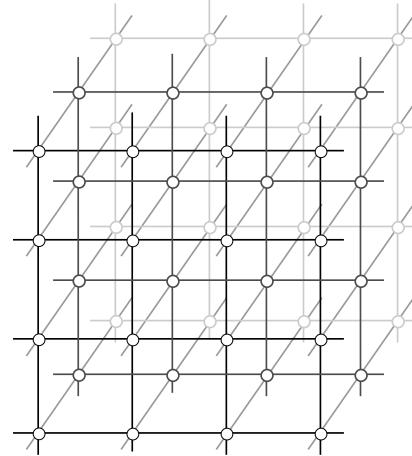
Random walks on a lattice

- A 3 dimensional hypercubic lattice:



Random walks on a lattice

- A 3 dimensional hypercubic lattice:



- On a (2d) square grid, the walker moves N, S, E or W with probability $1/4$, and in general, on a d -dimensional lattice, the walker moves in one of the $2d$ possible directions with equal probability $1/2d$. Hence the number of possible n step random walks is $c_n = (2d)^n$.

Random walks on a lattice

- The first question Pólya asked is: *Will such a random walker return to the origin as the number of steps grows without bound?*

Random walks on a lattice

- The first question Pólya asked is: *Will such a random walker return to the origin as the number of steps grows without bound?*
- Surprisingly—or at least, non-obviously—the answer is yes for $d = 1$ and $d = 2$, but no for $d \geq 3$.

Proof for $d = 1$.

- We are now considering random walks on the number line, starting at “0”.

Proof for $d = 1$.

- We are now considering random walks on the number line, starting at “0”.
- We seek R , the probability that the walker returns to the origin after an unbounded number of steps.

Proof for $d = 1$.

- We are now considering random walks on the number line, starting at “0”.
- We seek R , the probability that the walker returns to the origin after an unbounded number of steps.
- The first step is to the left or to the right with equal probability. Let’s assume it is to the right, hence to “1”.

Proof for $d = 1$.

- We are now considering random walks on the number line, starting at “0”.
- We seek R , the probability that the walker returns to the origin after an unbounded number of steps.
- The first step is to the left or to the right with equal probability. Let’s assume it is to the right, hence to “1”.
- Then the next step is either back to the origin (with probability $1/2$), or to “2”, also with probability $1/2$.

Proof for $d = 1$.

- We are now considering random walks on the number line, starting at “0”.
- We seek R , the probability that the walker returns to the origin after an unbounded number of steps.
- The first step is to the left or to the right with equal probability. Let’s assume it is to the right, hence to “1”.
- Then the next step is either back to the origin (with probability $1/2$), or to “2”, also with probability $1/2$.
- In the latter case, the walker must return to “1” before he/she can return to “0”. The walker, upon returning to “1”, can then go to “0” or move off to the right again.

- Note that the probability of returning to “1” is also R —the same as the probability of returning to “0”, as we are on an infinite number line.

- Note that the probability of returning to “1” is also R —the same as the probability of returning to “0”, as we are on an infinite number line.
- The probability of going right from “1” and then returning is $R/2$, where the $1/2$ factor comes from the fact that the probability of the first step to the right is $1/2$.

- Note that the probability of returning to “1” is also R —the same as the probability of returning to “0”, as we are on an infinite number line.
- The probability of going right from “1” and then returning is $R/2$, where the $1/2$ factor comes from the fact that the probability of the first step to the right is $1/2$.
- Similarly, the probability of going right from “1” m times and returning to “1” (without ever visiting “0”) is $R^m/2^m$.

- Note that the probability of returning to “1” is also R —the same as the probability of returning to “0”, as we are on an infinite number line.
- The probability of going right from “1” and then returning is $R/2$, where the $1/2$ factor comes from the fact that the probability of the first step to the right is $1/2$.
- Similarly, the probability of going right from “1” m times and returning to “1” (without ever visiting “0”) is $R^m/2^m$.
- It follows that

$$R = \frac{1}{2} + \frac{1}{4}R + \frac{1}{8}R^2 + \cdots + \frac{R^2}{2^{m+1}} + \cdots .$$

Proof for $d = 1$ continued.

- Repeating,

$$R = \frac{1}{2} + \frac{1}{4}R + \frac{1}{8}R^2 + \cdots + \frac{R^2}{2^{m+1}} + \cdots .$$

Proof for $d = 1$ continued.

- Repeating,

$$R = \frac{1}{2} + \frac{1}{4}R + \frac{1}{8}R^2 + \cdots + \frac{R^2}{2^{m+1}} + \cdots .$$

- This is just a geometric series, summing which gives $2R = \frac{1}{1-R/2}$. Cross-multiplying gives $2R(1 - R/2) = 1$ or $R^2 - 2R + 1 = (R - 1)^2 = 0$.

Proof for $d = 1$ continued.

- Repeating,

$$R = \frac{1}{2} + \frac{1}{4}R + \frac{1}{8}R^2 + \cdots + \frac{R^2}{2^{m+1}} + \cdots .$$

- This is just a geometric series, summing which gives $2R = \frac{1}{1-R/2}$. Cross-multiplying gives $2R(1 - R/2) = 1$ or $R^2 - 2R + 1 = (R - 1)^2 = 0$.
- This has the unique solution $R = 1$.

Proof for $d = 1$ continued.

- Repeating,

$$R = \frac{1}{2} + \frac{1}{4}R + \frac{1}{8}R^2 + \cdots + \frac{R^2}{2^{m+1}} + \cdots .$$

- This is just a geometric series, summing which gives $2R = \frac{1}{1-R/2}$. Cross-multiplying gives $2R(1 - R/2) = 1$ or $R^2 - 2R + 1 = (R - 1)^2 = 0$.
- This has the unique solution $R = 1$.
- Thus the walker will return absolutely certainly to the origin.

Proof for $d = 1$ continued.

- Repeating,

$$R = \frac{1}{2} + \frac{1}{4}R + \frac{1}{8}R^2 + \cdots + \frac{R^2}{2^{m+1}} + \cdots .$$

- This is just a geometric series, summing which gives $2R = \frac{1}{1-R/2}$. Cross-multiplying gives $2R(1 - R/2) = 1$ or $R^2 - 2R + 1 = (R - 1)^2 = 0$.
- This has the unique solution $R = 1$.
- Thus the walker will return absolutely certainly to the origin.
- In three dimensions the probability of return is given by a very difficult integral. It evaluates to 0.340537...

Nasty integral

$$p_3 = 1 - 1/m_3.$$

Nasty integral

$$p_3 = 1 - 1/m_3.$$

$$m_3 = \frac{3}{(2\pi)^3} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{d\theta d\phi d\psi}{1 - \cos(\theta) - \cos(\phi) - \cos(\psi)}$$

Nasty integral

$$p_3 = 1 - 1/m_3.$$

$$m_3 = \frac{3}{(2\pi)^3} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{d\theta d\phi d\psi}{1 - \cos(\theta) - \cos(\phi) - \cos(\psi)}$$

- This took 37 years to get into “simple” closed form:

$$m_3 = \frac{\sqrt{6}}{32\pi^3} \Gamma\left(\frac{1}{24}\right) \Gamma\left(\frac{3}{24}\right) \Gamma\left(\frac{5}{24}\right) \Gamma\left(\frac{7}{24}\right) = 1.5163860591 \dots$$

Other properties.

- There are many other properties of interest.

Other properties.

- There are many other properties of interest.
- The mean number of steps taken for return to the origin.

Other properties.

- There are many other properties of interest.
- The mean number of steps taken for return to the origin.
- Remarkably, and counter-intuitively, this is infinite in $d = 1$ and 2 .

Other properties.

- There are many other properties of interest.
- The mean number of steps taken for return to the origin.
- Remarkably, and counter-intuitively, this is infinite in $d = 1$ and 2 .
- One can ask how far from the origin is the end-point of an n -step walker. This is easier. $\langle R^2 \rangle_n = n$. So the “size” grows like \sqrt{n} .

Other properties.

- There are many other properties of interest.
- The mean number of steps taken for return to the origin.
- Remarkably, and counter-intuitively, this is infinite in $d = 1$ and 2 .
- One can ask how far from the origin is the end-point of an n -step walker. This is easier. $\langle R^2 \rangle_n = n$. So the “size” grows like \sqrt{n} .
- One traditionally writes $\langle R^2 \rangle_n = n^{2\nu}$, so $\nu = 1/2$.

Other properties.

- There are many other properties of interest.
- The mean number of steps taken for return to the origin.
- Remarkably, and counter-intuitively, this is infinite in $d = 1$ and 2 .
- One can ask how far from the origin is the end-point of an n -step walker. This is easier. $\langle R^2 \rangle_n = n$. So the “size” grows like \sqrt{n} .
- One traditionally writes $\langle R^2 \rangle_n = n^{2\nu}$, so $\nu = 1/2$.
- There is a close connection between random walks and Brownian motion.

Other properties.

- There are many other properties of interest.
- The mean number of steps taken for return to the origin.
- Remarkably, and counter-intuitively, this is infinite in $d = 1$ and 2 .
- One can ask how far from the origin is the end-point of an n -step walker. This is easier. $\langle R^2 \rangle_n = n$. So the “size” grows like \sqrt{n} .
- One traditionally writes $\langle R^2 \rangle_n = n^{2\nu}$, so $\nu = 1/2$.
- There is a close connection between random walks and Brownian motion.
- Note that walks have no *history*. The next step depends only on the walker’s current position. Such a process is called a *Markov process*.

Self-avoiding walks and polygons.

- A SAW is a lattice random walk with one additional condition. No site may be revisited.

Self-avoiding walks and polygons.

- A SAW is a lattice random walk with one additional condition. No site may be revisited.

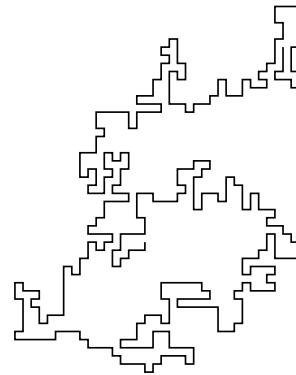


Figure 2: A two-dim. SAW on two different scales

Self-avoiding walks and polygons.

- A SAW is a lattice random walk with one additional condition. No site may be revisited.

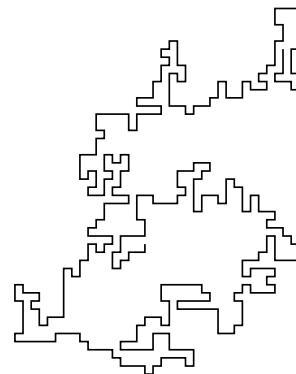
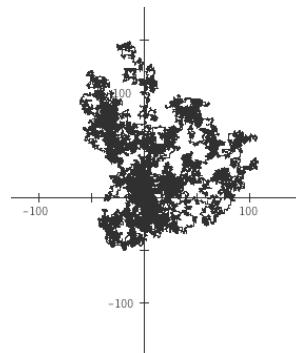


Figure 2: A two-dim. SAW on two different scales



Self-avoiding walks and polygons.

- This seemingly small change dramatically increases the difficulty of the problem.

Self-avoiding walks and polygons.

- This seemingly small change dramatically increases the difficulty of the problem.
- In one dimension the problem becomes trivial. In two or more dimensions it becomes so difficult that it has never been solved.

Self-avoiding walks and polygons.

- This seemingly small change dramatically increases the difficulty of the problem.
- In one dimension the problem becomes trivial. In two or more dimensions it becomes so difficult that it has never been solved.
- The questions we want to answer include the following: How many n -step SAW are there? How big are they?

Self-avoiding walks and polygons.

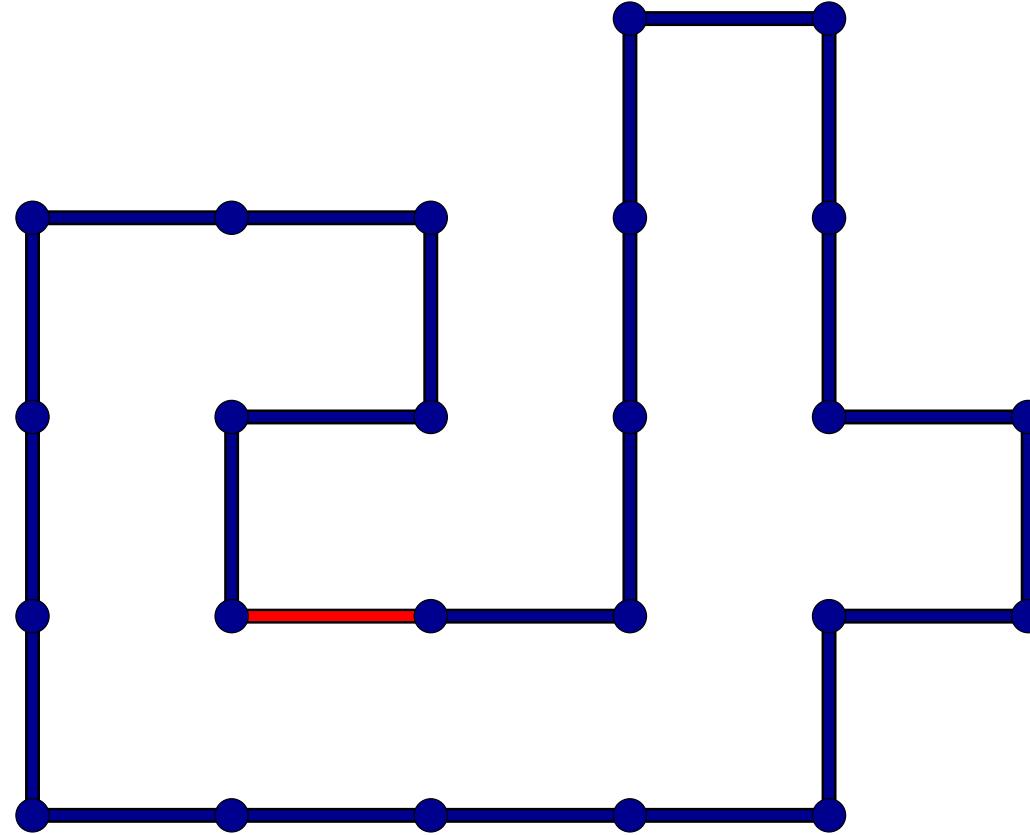
- This seemingly small change dramatically increases the difficulty of the problem.
- In one dimension the problem becomes trivial. In two or more dimensions it becomes so difficult that it has never been solved.
- The questions we want to answer include the following: How many n -step SAW are there? How big are they?
- The difficulty relates to the fact that we have (for $d > 1$) lost the Markovian property.

Self-avoiding polygons

- Self-avoiding polygons (SAP) are SAW whose last monomer (site) is adjacent to the first.

Self-avoiding polygons

- Self-avoiding polygons (SAP) are SAW whose last monomer (site) is adjacent to the first.



Self-avoiding walks and polygons.

Self-avoiding walks and polygons are paradigms of problems in combinatorics.

Their study encompasses a surprisingly broad range of areas of mathematics, biology, chemistry and physics:

- macromolecules in biology, RNA, DNA, proteins

Self-avoiding walks and polygons.

Self-avoiding walks and polygons are paradigms of problems in combinatorics.

Their study encompasses a surprisingly broad range of areas of mathematics, biology, chemistry and physics:

- macromolecules in biology, RNA, DNA, proteins
- numerical analysis and computing

Self-avoiding walks and polygons.

Self-avoiding walks and polygons are paradigms of problems in combinatorics.

Their study encompasses a surprisingly broad range of areas of mathematics, biology, chemistry and physics:

- macromolecules in biology, RNA, DNA, proteins
- numerical analysis and computing
- algorithm design,

Self-avoiding walks and polygons.

Self-avoiding walks and polygons are paradigms of problems in combinatorics.

Their study encompasses a surprisingly broad range of areas of mathematics, biology, chemistry and physics:

- macromolecules in biology, RNA, DNA, proteins
- numerical analysis and computing
- algorithm design,
- functional analysis,

Self-avoiding walks and polygons.

Self-avoiding walks and polygons are paradigms of problems in combinatorics.

Their study encompasses a surprisingly broad range of areas of mathematics, biology, chemistry and physics:

- macromolecules in biology, RNA, DNA, proteins
- numerical analysis and computing
- algorithm design,
- functional analysis,
- knot theory,

Self-avoiding walks and polygons.

Self-avoiding walks and polygons are paradigms of problems in combinatorics.

Their study encompasses a surprisingly broad range of areas of mathematics, biology, chemistry and physics:

- macromolecules in biology, RNA, DNA, proteins
- numerical analysis and computing
- algorithm design,
- functional analysis,
- knot theory,
- discrete mathematics,

Self-avoiding walks and polygons.

Self-avoiding walks and polygons are paradigms of problems in combinatorics.

Their study encompasses a surprisingly broad range of areas of mathematics, biology, chemistry and physics:

- macromolecules in biology, RNA, DNA, proteins
- numerical analysis and computing
- algorithm design,
- functional analysis,
- knot theory,
- discrete mathematics,
- Markov process theory,

Self-avoiding walks and polygons.

Self-avoiding walks and polygons are paradigms of problems in combinatorics.

Their study encompasses a surprisingly broad range of areas of mathematics, biology, chemistry and physics:

- macromolecules in biology, RNA, DNA, proteins
- numerical analysis and computing
- algorithm design,
- functional analysis,
- knot theory,
- discrete mathematics,
- Markov process theory,
- number theory

Why the interest in SAW?

- They obviously have considerable intrinsic mathematical interest.

Why the interest in SAW?

- They obviously have considerable intrinsic mathematical interest.
- In the *Encyclopaedia Britannica* they are given as one of two classical combinatorial problems

Why the interest in SAW?

- They obviously have considerable intrinsic mathematical interest.
- In the *Encyclopaedia Britannica* they are given as one of two classical combinatorial problems
- They are the most elementary, realistic mathematical model of long-chain polymers in dilute solution.

Why the interest in SAW?

- They obviously have considerable intrinsic mathematical interest.
- In the *Encyclopaedia Britannica* they are given as one of two classical combinatorial problems
- They are the most elementary, realistic mathematical model of long-chain polymers in dilute solution.
- All life is made of polymers (DNA, RNA etc.)

Why the interest in SAW?

- They obviously have considerable intrinsic mathematical interest.
- In the *Encyclopaedia Britannica* they are given as one of two classical combinatorial problems
- They are the most elementary, realistic mathematical model of long-chain polymers in dilute solution.
- All life is made of polymers (DNA, RNA etc.)
- Much of the world's industry is either involved with, or relies on polymers.

Why the interest in SAW?

- They obviously have considerable intrinsic mathematical interest.
- In the *Encyclopaedia Britannica* they are given as one of two classical combinatorial problems
- They are the most elementary, realistic mathematical model of long-chain polymers in dilute solution.
- All life is made of polymers (DNA, RNA etc.)
- Much of the world's industry is either involved with, or relies on polymers.
- Examples range from paint to polyethylene.

What is a polymer?

- Polymers are long chain molecules consisting of a large number of *monomers* held together by chemical bonds.

What is a polymer?

- Polymers are long chain molecules consisting of a large number of *monomers* held together by chemical bonds.
- Those made of identical units are called *homopolymers*,

What is a polymer?

- Polymers are long chain molecules consisting of a large number of *monomers* held together by chemical bonds.
- Those made of identical units are called *homopolymers*,
- Those made of more than one unit are called *heteropolymers* or *copolymers*.

What is a polymer?

- Polymers are long chain molecules consisting of a large number of *monomers* held together by chemical bonds.
- Those made of identical units are called *homopolymers*,
- Those made of more than one unit are called *heteropolymers* or *copolymers*.
- Chemists are traditionally interested in local properties, notably the specific chemical properties, while physicists are interested in the global properties, and mathematicians are interested in exact solutions, or proving properties that the solution must satisfy, even if we can't find it.

From polymers to SAW

- As chemical bond angles are fixed, we consider lattice models of polymers.

From polymers to SAW

- As chemical bond angles are fixed, we consider lattice models of polymers.
- *Universality* implies that, for global properties, the precise lattice doesn't matter.

From polymers to SAW

- As chemical bond angles are fixed, we consider lattice models of polymers.
- *Universality* implies that, for global properties, the precise lattice doesn't matter.
- The idealisation as random or more usually *self-avoiding* walks on a lattice has become ubiquitous.

From polymers to SAW

- As chemical bond angles are fixed, we consider lattice models of polymers.
- *Universality* implies that, for global properties, the precise lattice doesn't matter.
- The idealisation as random or more usually *self-avoiding* walks on a lattice has become ubiquitous.
- The self-avoiding property reflects the fact that two monomers cannot occupy the same point in space.

From polymers to SAW

- As chemical bond angles are fixed, we consider lattice models of polymers.
- *Universality* implies that, for global properties, the precise lattice doesn't matter.
- The idealisation as random or more usually *self-avoiding* walks on a lattice has become ubiquitous.
- The self-avoiding property reflects the fact that two monomers cannot occupy the same point in space.
- The measure of a polymer is given by properties such as the number of monomers (its length), or the average distance from one end to the other.

Models of polymers

- The ubiquitous polymer model is the SAW.

Models of polymers

- The ubiquitous polymer model is the SAW.
- It can be defined as a connected path on a lattice such that no site, once visited, is revisited. We'll largely consider SAW on a square or hexagonal grid.

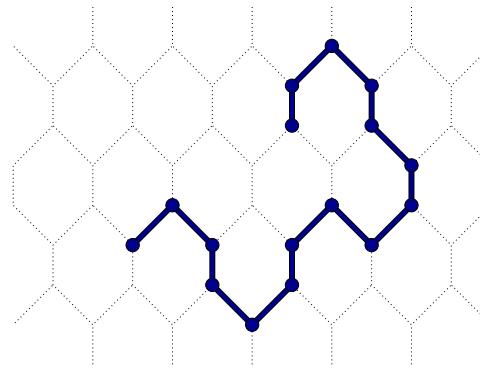
Models of polymers

- The ubiquitous polymer model is the SAW.
- It can be defined as a connected path on a lattice such that no site, once visited, is revisited. We'll largely consider SAW on a square or hexagonal grid.



Models of polymers

- The ubiquitous polymer model is the SAW.
- It can be defined as a connected path on a lattice such that no site, once visited, is revisited. We'll largely consider SAW on a square or hexagonal grid.



- Unfortunately it is trivial in one dimension, and unsolved in higher dimensions.

What is a SAW?

- Remember the definition: A connected path on a lattice such that no site, once visited, is revisited.

What is a SAW?

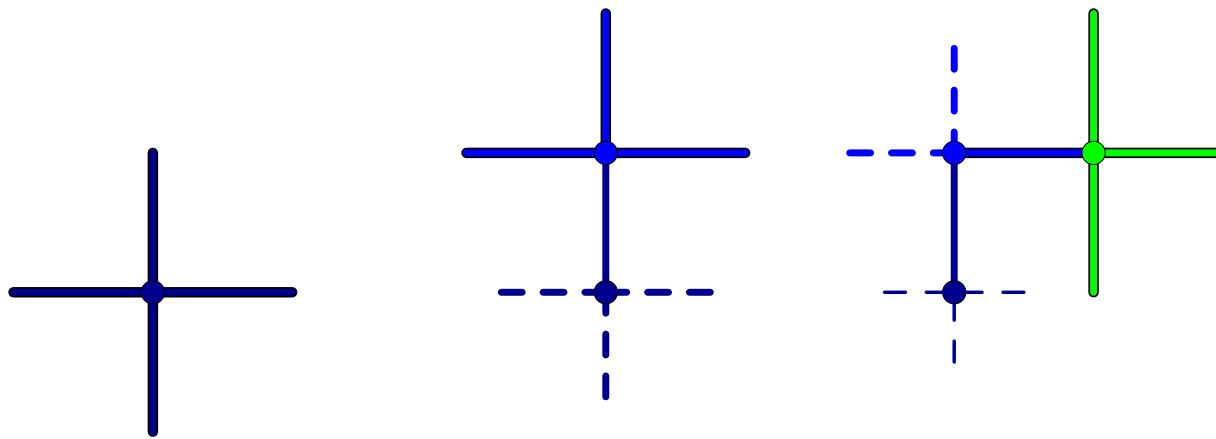
- Remember the definition: A connected path on a lattice such that no site, once visited, is revisited.
- Let c_n denotes the number of n -step SAW (equivalent up to a translation).

What is a SAW?

- Remember the definition: A connected path on a lattice such that no site, once visited, is revisited.
- Let c_n denotes the number of n -step SAW (equivalent up to a translation).
- On the square grid, clearly $c_1 = 4$, $c_2 = 12$ and $c_3 = 36$.

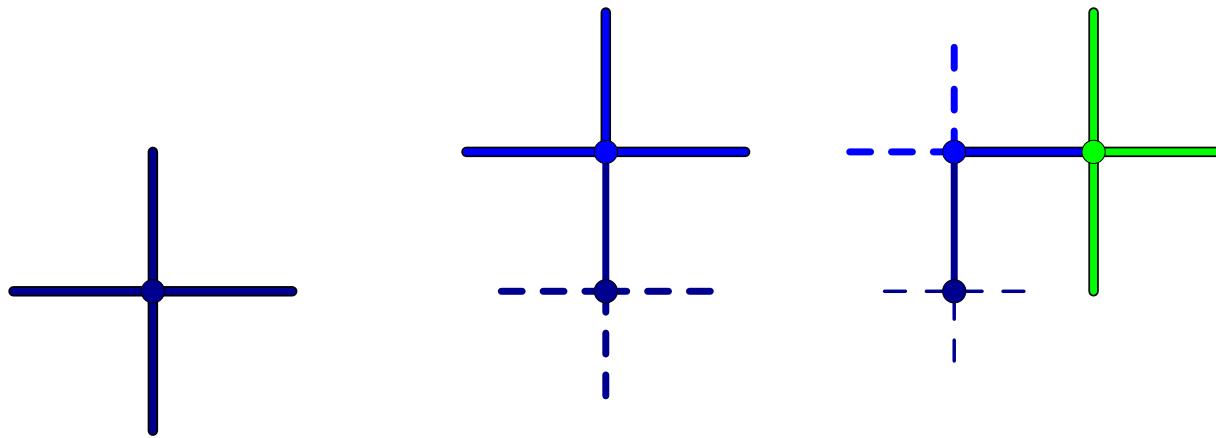
What is a SAW?

- Remember the definition: A connected path on a lattice such that no site, once visited, is revisited.
- Let c_n denotes the number of n -step SAW (equivalent up to a translation).
- On the square grid, clearly $c_1 = 4$, $c_2 = 12$ and $c_3 = 36$.



What is a SAW?

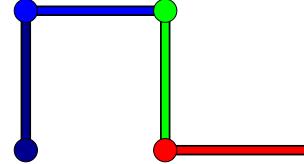
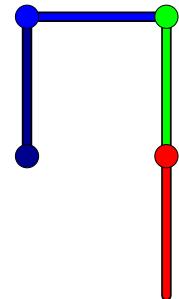
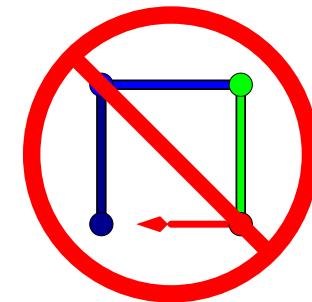
- Remember the definition: A connected path on a lattice such that no site, once visited, is revisited.
- Let c_n denotes the number of n -step SAW (equivalent up to a translation).
- On the square grid, clearly $c_1 = 4$, $c_2 = 12$ and $c_3 = 36$.



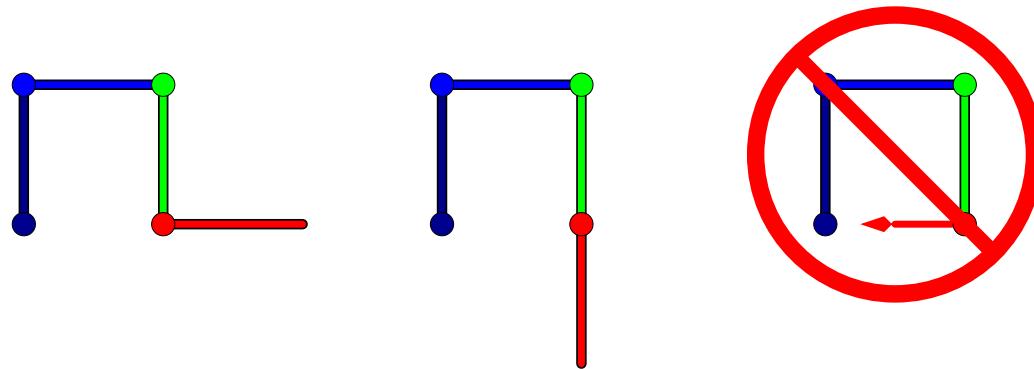
- $c_4 = 100$ rather than 108 as SAW constraint first enters.

- 8 such walks self-intersect.

- 8 such walks self-intersect.

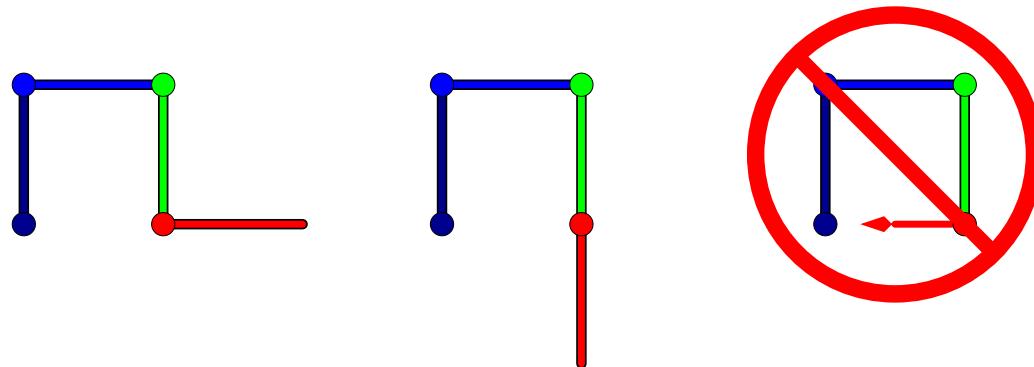


- 8 such walks self-intersect.

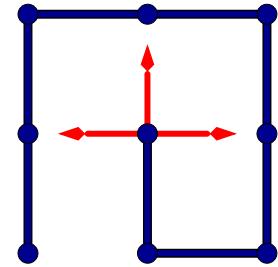


- SAWs can self-trap in any dimension $d > 1$.

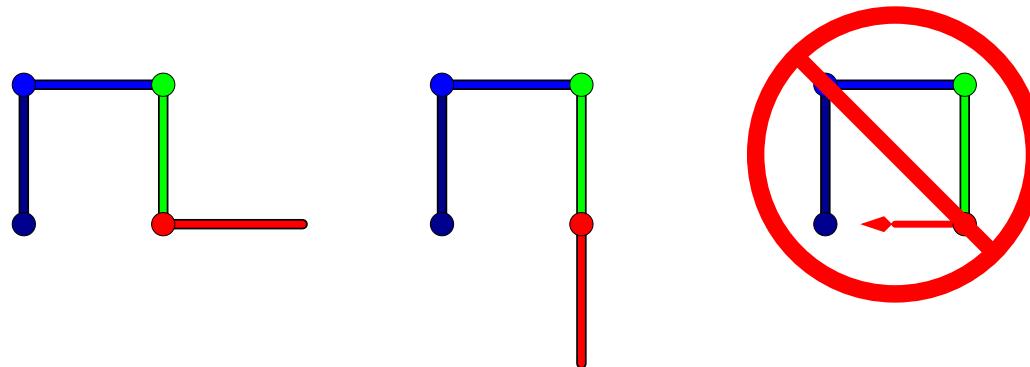
- 8 such walks self-intersect.



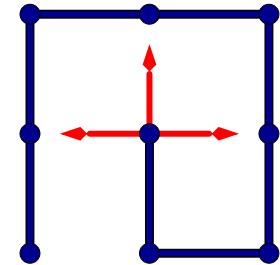
- SAWs can self-trap in any dimension $d > 1$.



- 8 such walks self-intersect.



- SAWs can self-trap in any dimension $d > 1$.



- On the square lattice, the mean number of steps of a self-trapping walk is about 71.

History

- History begins in mid '40s. Paper by Orr (1947).

History

- History begins in mid '40s. Paper by Orr (1947).
- Remarkably little can be proved.

History

- History begins in mid '40s. Paper by Orr (1947).
- Remarkably little can be proved.
- Hammersley and Morton ('54) proved, loosely speaking, that the number of n -step SAW grows like μ^n .

History

- History begins in mid '40s. Paper by Orr (1947).
- Remarkably little can be proved.
- Hammersley and Morton ('54) proved, loosely speaking, that the number of n -step SAW grows like μ^n .
- μ is called the *connective constant*. It is the average no. of available steps for an infinitely long walk.

History

- History begins in mid '40s. Paper by Orr (1947).
- Remarkably little can be proved.
- Hammersley and Morton ('54) proved, loosely speaking, that the number of n -step SAW grows like μ^n .
- μ is called the *connective constant*. It is the average no. of available steps for an infinitely long walk.
- Recall, on a square grid, for random walks, $c_n = 4^n$. Hence $\mu_{\text{random}} = 4$.

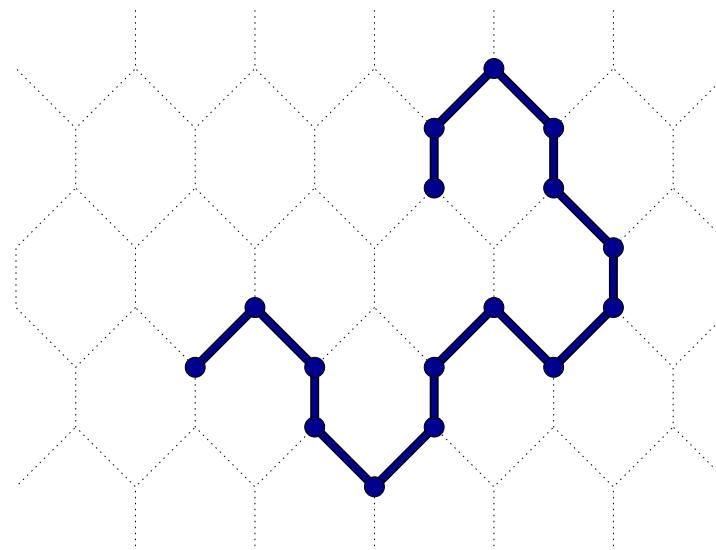
History

- History begins in mid '40s. Paper by Orr (1947).
- Remarkably little can be proved.
- Hammersley and Morton ('54) proved, loosely speaking, that the number of n -step SAW grows like μ^n .
- μ is called the *connective constant*. It is the average no. of available steps for an infinitely long walk.
- Recall, on a square grid, for random walks, $c_n = 4^n$. Hence $\mu_{\text{random}} = 4$.
- If we forbid immediate reversals, $c_n = 4 \times 3^{n-1}$, so $\mu_{\text{no-reversal}} = 3$ in that case.

Values of μ

An argument due to Nienhuis ('82) yields

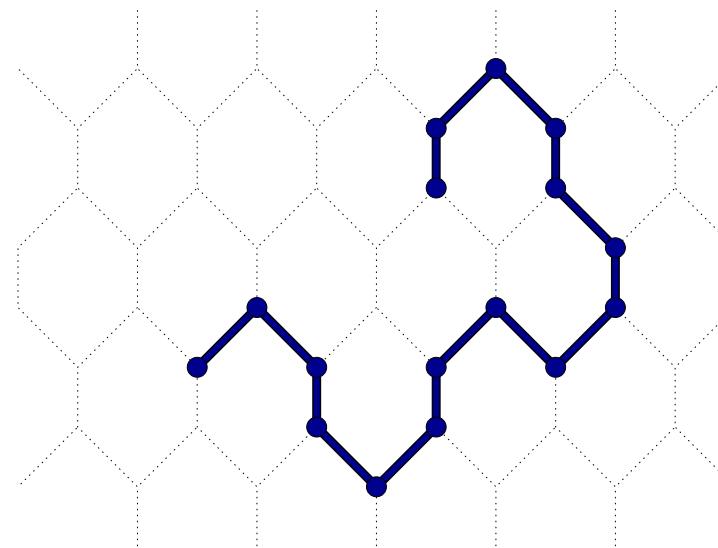
$\mu_h = \sqrt{2 + \sqrt{2}} \approx 1.8477..$ for SAWs on the hexagonal lattice.
(Here, $\mu_{rand.} = 3$, and $\mu_{no-rev.} = 2$.)



Values of μ

An argument due to Nienhuis ('82) yields

$\mu_h = \sqrt{2 + \sqrt{2}} \approx 1.8477..$ for SAWs on the hexagonal lattice.
 (Here, $\mu_{rand.} = 3$, and $\mu_{no-rev.} = 2$.)



Status: Universally believed, but not proved.

Properties relating to *number* and *size*

- Though not proved, it is believed that $c_n \propto \mu^n n^{\gamma-1}$.

Properties relating to *number* and *size*

- Though not proved, it is believed that $c_n \propto \mu^n n^{\gamma-1}$.
- In two dimensions it is believed that $\gamma = 43/32$.

Properties relating to *number* and *size*

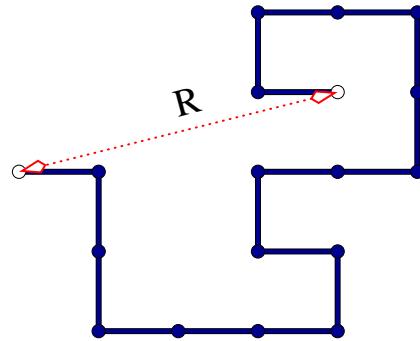
- Though not proved, it is believed that $c_n \propto \mu^n n^{\gamma-1}$.
- In two dimensions it is believed that $\gamma = 43/32$.
- Remarkably, while μ varies from lattice to lattice, γ is believed to be fixed (given the lattice dimensionality).

Properties relating to *number* and *size*

- Though not proved, it is believed that $c_n \propto \mu^n n^{\gamma-1}$.
- In two dimensions it is believed that $\gamma = 43/32$.
- Remarkably, while μ varies from lattice to lattice, γ is believed to be fixed (given the lattice dimensionality).
- Similarly, the average, over all n -step walks, of the square of the end-to-end distance, denoted $\langle R^2 \rangle_n \propto n^{2\nu}$.

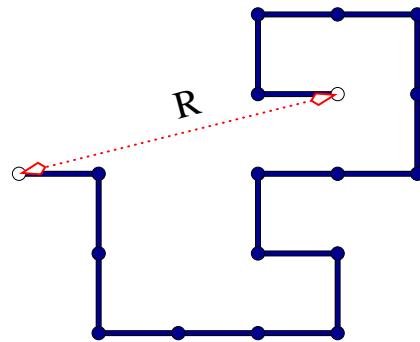
Properties relating to *number* and *size*

- Though not proved, it is believed that $c_n \propto \mu^n n^{\gamma-1}$.
- In two dimensions it is believed that $\gamma = 43/32$.
- Remarkably, while μ varies from lattice to lattice, γ is believed to be fixed (given the lattice dimensionality).
- Similarly, the average, over all n -step walks, of the square of the end-to-end distance, denoted $\langle R^2 \rangle_n \propto n^{2\nu}$.



Properties relating to *number* and *size*

- Though not proved, it is believed that $c_n \propto \mu^n n^{\gamma-1}$.
- In two dimensions it is believed that $\gamma = 43/32$.
- Remarkably, while μ varies from lattice to lattice, γ is believed to be fixed (given the lattice dimensionality).
- Similarly, the average, over all n -step walks, of the square of the end-to-end distance, denoted $\langle R^2 \rangle_n \propto n^{2\nu}$.



- This measures the *size* of a SAW. Like γ , ν is also lattice independent.

Size exponent ν .

- Recall that $\nu = 1/2$ for random walks.

Size exponent ν .

- Recall that $\nu = 1/2$ for random walks.
- For (two-dimensional) SAW, $\nu = 3/4$.

Size exponent ν .

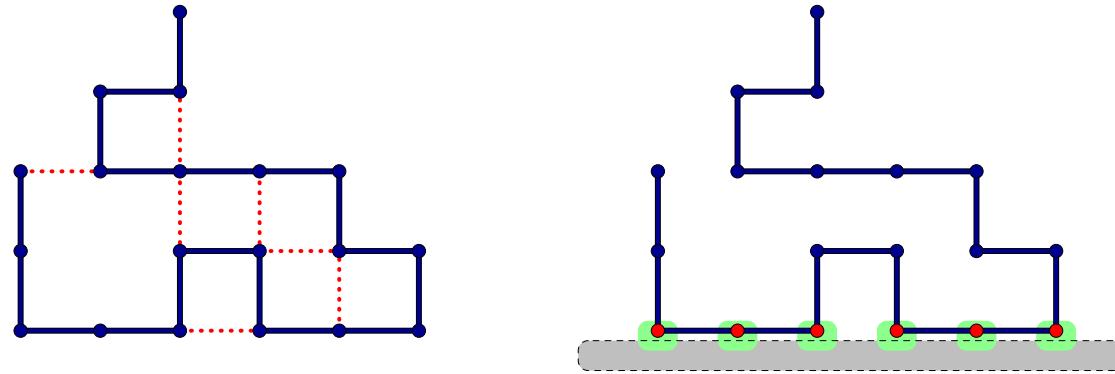
- Recall that $\nu = 1/2$ for random walks.
- For (two-dimensional) SAW, $\nu = 3/4$.
- This is intuitively reasonable. The SAW constraint causes the walk to “spread out.”

What other properties can we study?

- This lattice idealisation allows many systems beyond polymers in dilute solution to be investigated.

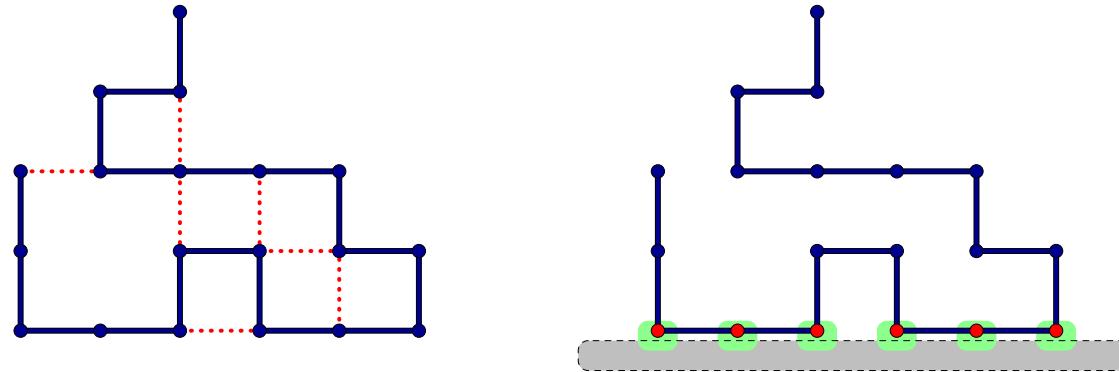
What other properties can we study?

- This lattice idealisation allows many systems beyond polymers in dilute solution to be investigated.



What other properties can we study?

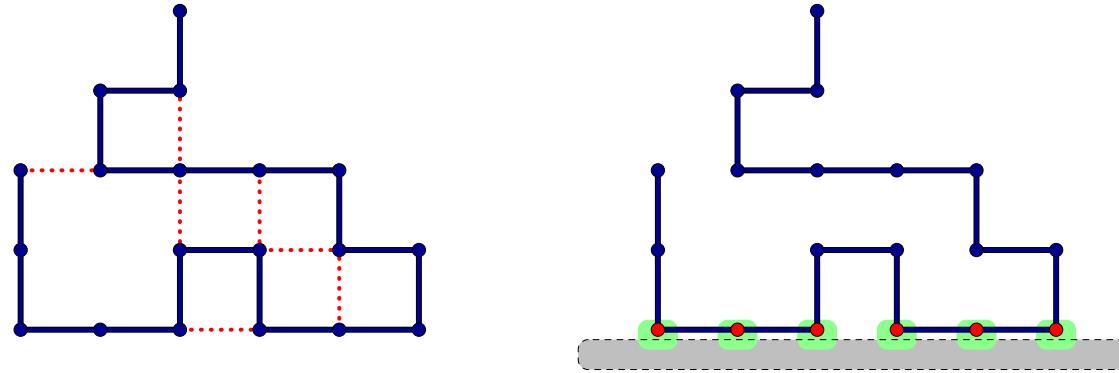
- This lattice idealisation allows many systems beyond polymers in dilute solution to be investigated.



- Monomer-monomer interactions can be included, allowing collapse transitions to be investigated.

What other properties can we study?

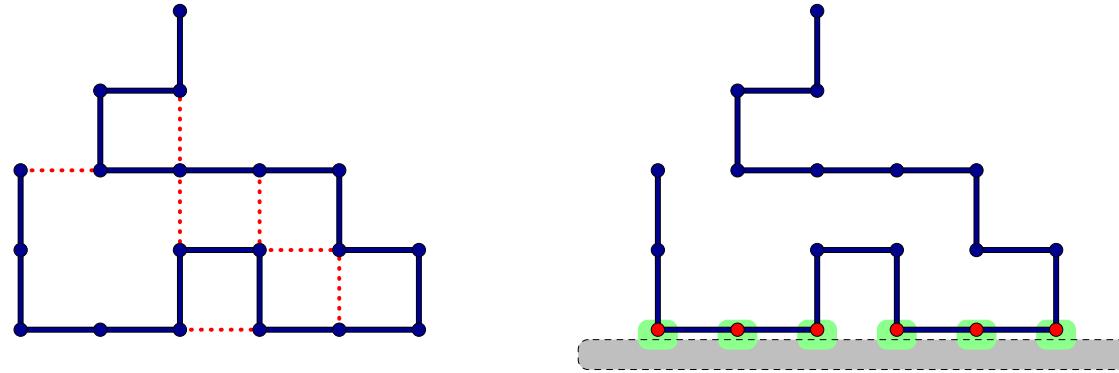
- This lattice idealisation allows many systems beyond polymers in dilute solution to be investigated.



- Monomer-monomer interactions can be included, allowing collapse transitions to be investigated.
- Monomer-wall interactions allow surface interactions to be studied.

What other properties can we study?

- This lattice idealisation allows many systems beyond polymers in dilute solution to be investigated.



- Monomer-monomer interactions can be included, allowing collapse transitions to be investigated.
- Monomer-wall interactions allow surface interactions to be studied.
- We usually ask how the size varies with these interactions.

Biological molecules are polymers

- Biological molecules like DNA, RNA, and proteins are all polymers.

Biological molecules are polymers

- Biological molecules like DNA, RNA, and proteins are all polymers.
- Properties of DNA such as denaturation, folding and stretching can all be modelled by such lattice models.

Biological molecules are polymers

- Biological molecules like DNA, RNA, and proteins are all polymers.
- Properties of DNA such as denaturation, folding and stretching can all be modelled by such lattice models.

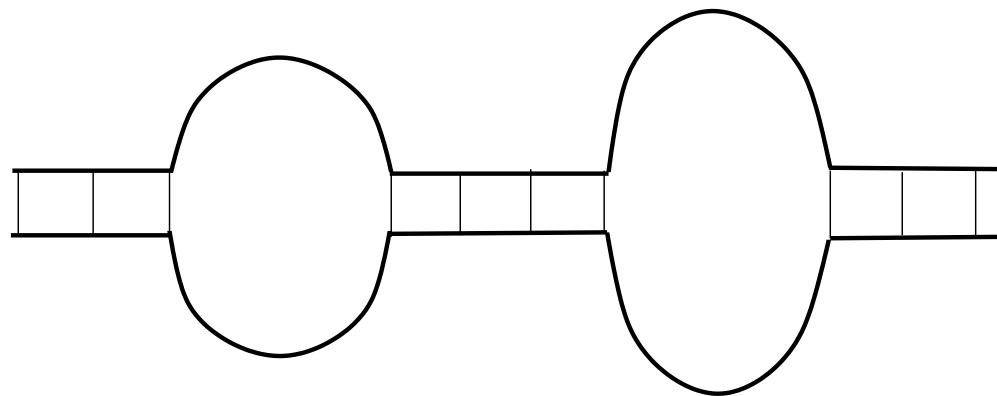


Figure 3: Schematic representation of denatured chain structure

Self-avoiding polygons

- Applications of SAP are equally rich.

Self-avoiding polygons

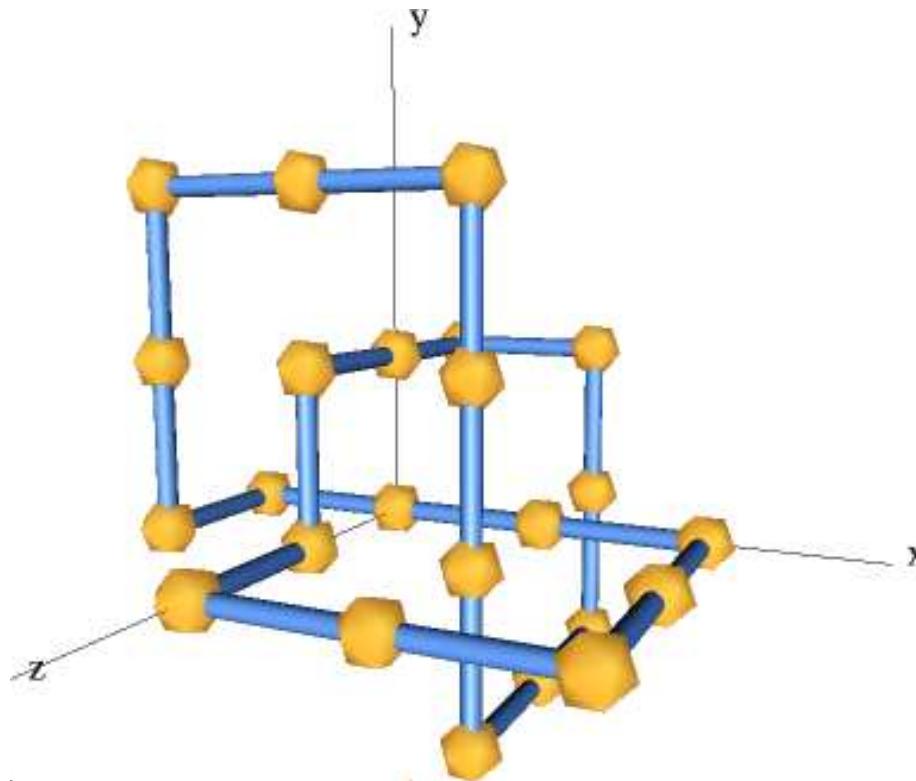
- Applications of SAP are equally rich.
- Because they enclose an area or volume, we can study pressure induced phenomena, which occur in biological molecules.

Self-avoiding polygons

- Applications of SAP are equally rich.
- Because they enclose an area or volume, we can study pressure induced phenomena, which occur in biological molecules.
- The fact that we are dealing with loops means the concept of *knottedness* can be studied. The theory of knots in polymers is an important and active subject in its own right.

Knots

There is a lot of literature devoted to *knotted walks* and *polygons*. These model knots in polymers, and in particular DNA. Here is a *trefoil* in three-dimensional space.



Counting

- There is a big effort by many scientists in efficiently counting the number c_n of n -step SAW.

Counting

- There is a big effort by many scientists in efficiently counting the number c_n of n -step SAW.
- The problem is that, as we've proved, c_n increases like $\mu^n \approx 2.64^n$ for the square lattice.

Counting

- There is a big effort by many scientists in efficiently counting the number c_n of n -step SAW.
- The problem is that, as we've proved, c_n increases like $\mu^n \approx 2.64^n$ for the square lattice.
- The current record is that walks up to 71 steps have been counted.

Counting

- There is a big effort by many scientists in efficiently counting the number c_n of n -step SAW.
- The problem is that, as we've proved, c_n increases like $\mu^n \approx 2.64^n$ for the square lattice.
- The current record is that walks up to 71 steps have been counted.
- Now, $2.64^{71} \approx 10^{30}$. A fast computer can count 10^7 or, at best, 10^8 walks per minute.

Counting

- There is a big effort by many scientists in efficiently counting the number c_n of n -step SAW.
- The problem is that, as we've proved, c_n increases like $\mu^n \approx 2.64^n$ for the square lattice.
- The current record is that walks up to 71 steps have been counted.
- Now, $2.64^{71} \approx 10^{30}$. A fast computer can count 10^7 or, at best, 10^8 walks per minute.
- So counting 71 step walks would take 10^{22} minutes. Assume there are 10^9 computers on the planet.

Counting

- There is a big effort by many scientists in efficiently counting the number c_n of n -step SAW.
- The problem is that, as we've proved, c_n increases like $\mu^n \approx 2.64^n$ for the square lattice.
- The current record is that walks up to 71 steps have been counted.
- Now, $2.64^{71} \approx 10^{30}$. A fast computer can count 10^7 or, at best, 10^8 walks per minute.
- So counting 71 step walks would take 10^{22} minutes. Assume there are 10^9 computers on the planet.
- This would then take 10^{13} minutes, using all the world's computing resources, or 20 million years!

Counting

- We wish to devise algorithms that work faster than direct counting.

Counting

- We wish to devise algorithms that work faster than direct counting.
- Trick is to work on a *finite lattice*.

Counting

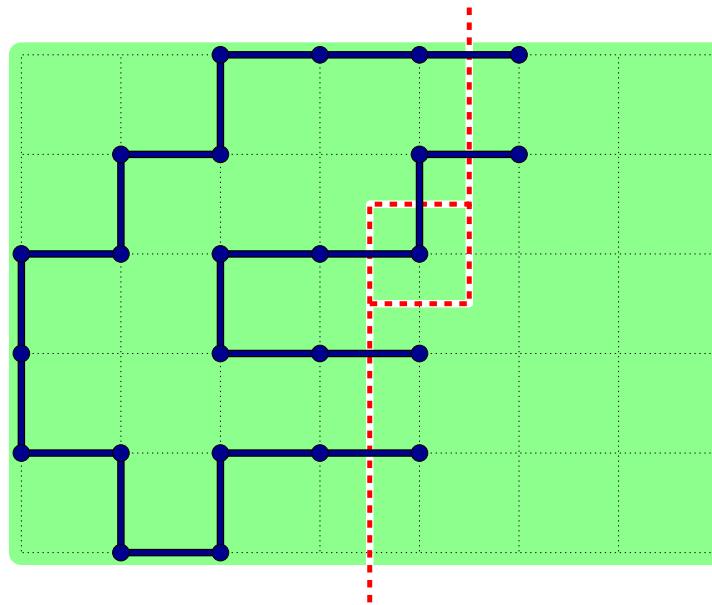
- We wish to devise algorithms that work faster than direct counting.
- Trick is to work on a *finite lattice*.
- The FLM, was first suggested by Tom de Neef, and proved to be valid by Ian Enting ('70s).

Counting

- We wish to devise algorithms that work faster than direct counting.
- Trick is to work on a *finite lattice*.
- The FLM, was first suggested by Tom de Neef, and proved to be valid by Ian Enting ('70s).
- With a finite lattice, we can use a *transfer matrix*.

Counting

- We wish to devise algorithms that work faster than direct counting.
- Trick is to work on a *finite lattice*.
- The FLM, was first suggested by Tom de Neef, and proved to be valid by Ian Enting ('70s).
- With a finite lattice, we can use a *transfer matrix*.



- Loosely speaking, if we keep track of all possibilities to the left of the line, we can join them uniquely to all possibilities to the right, with the same boundaries.

- Loosely speaking, if we keep track of all possibilities to the left of the line, we can join them uniquely to all possibilities to the right, with the same boundaries.
- This turns out to be computationally vastly more efficient.

- Loosely speaking, if we keep track of all possibilities to the left of the line, we can join them uniquely to all possibilities to the right, with the same boundaries.
- This turns out to be computationally vastly more efficient.
- Over the years the team at Melbourne University have refined and improved this method.

- Loosely speaking, if we keep track of all possibilities to the left of the line, we can join them uniquely to all possibilities to the right, with the same boundaries.
- This turns out to be computationally vastly more efficient.
- Over the years the team at Melbourne University have refined and improved this method.
- Currently Jensen's best algorithm for counting SAP takes time $\propto (1.2)^n$, compared to direct counting, which takes time $\propto 2.64^n$.

- Loosely speaking, if we keep track of all possibilities to the left of the line, we can join them uniquely to all possibilities to the right, with the same boundaries.
- This turns out to be computationally vastly more efficient.
- Over the years the team at Melbourne University have refined and improved this method.
- Currently Jensen's best algorithm for counting SAP takes time $\propto (1.2)^n$, compared to direct counting, which takes time $\propto 2.64^n$.
- The FLM plus TM is the best way to enumerate lattice objects in two dimensions. Works in higher dimension, but implementation is difficult

Outlook

- In this talk I have given a rushed overview of some of the results, and some of the problems of interest in this field.

Outlook

- In this talk I have given a rushed overview of some of the results, and some of the problems of interest in this field.
- While focussing on SAWs, many of the problems, ideas, and results are applicable to many other problems in enumerative combinatorics, mathematical physics, biology and theoretical chemistry.

Outlook

- In this talk I have given a rushed overview of some of the results, and some of the problems of interest in this field.
- While focussing on SAWs, many of the problems, ideas, and results are applicable to many other problems in enumerative combinatorics, mathematical physics, biology and theoretical chemistry.
- The problems are sufficiently simple that they can be readily grasped by a bright school student.

Outlook

- In this talk I have given a rushed overview of some of the results, and some of the problems of interest in this field.
- While focussing on SAWs, many of the problems, ideas, and results are applicable to many other problems in enumerative combinatorics, mathematical physics, biology and theoretical chemistry.
- The problems are sufficiently simple that they can be readily grasped by a bright school student.
- The non-technical nature of the problems means that there is scope for a non-professional mathematician to come up with an important idea.

References

- Students need a good grounding in mathematics if they are going to contribute to modern science, almost irrespective of discipline.

References

- Students need a good grounding in mathematics if they are going to contribute to modern science, almost irrespective of discipline.
- To learn more about SAWs, see *Random Walks and Random Environments, Vol. I* by B. D. Hughes OUP, 1995

References

- Students need a good grounding in mathematics if they are going to contribute to modern science, almost irrespective of discipline.
- To learn more about SAWs, see *Random Walks and Random Environments, Vol. I* by B. D. Hughes OUP, 1995
- *The Self-Avoiding Walk*, by N. Madras & G. Slade, Birkhäuser, 1993

References

- Students need a good grounding in mathematics if they are going to contribute to modern science, almost irrespective of discipline.
- To learn more about SAWs, see *Random Walks and Random Environments, Vol. I* by B. D. Hughes OUP, 1995
- *The Self-Avoiding Walk*, by N. Madras & G. Slade, Birkhäuser, 1993
- *The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles*, E. J. Janse van Rensburg, OUP 2000

References

- Students need a good grounding in mathematics if they are going to contribute to modern science, almost irrespective of discipline.
- To learn more about SAWs, see *Random Walks and Random Environments, Vol. I* by B. D. Hughes OUP, 1995
- *The Self-Avoiding Walk*, by N. Madras & G. Slade, Birkhäuser, 1993
- *The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles*, E. J. Janse van Rensburg, OUP 2000
- *Square Lattice Self-Avoiding Walks and Polygons*, A. J. Guttmann and A.R. Conway, *Annals of Combinatorics*, 5, 319-45, (2001)

The End/Fin

Thank you for your attention.