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3.1. Single Chain Properties

3.1.1. End-to-end Distance
Polymer chains consist of atoms that are connected by covalent bonds.  These covalent

bonds are usually capable of rotating, creating numerous number of possible conformations.  It
is, therefore, difficult to define the shape of a polymer chain.  It is for this reason that a concept,
end-to-end distance, R, is introduced.   The end-to-end distance is the distance that connect two
terminal atoms of the polymer chain.  If the chain is forming a tight ball, such as the case in a
poor solvent, the S would be small, whereby it is larger in a good solvent as the polymer ball is
inflated and the termincal groups are widely separated.  
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In order to calculate the end-to-end distance, the covalent bonds are regarded as vectors.
When many vectors form a closed system, the end-to-end distance R is a vector sum of the all
vectors, bi, along the polymer chain.  Thus,

R  =  bi∑
i=1

n
(3.1)

The distance R varies with time.  Therefore, the time average <R> must be considered.  However,
<R> can be either positive or negative (opposite direction), and therefore <R> is zero over a long
time period.  In order to avoid this difficulty, <R2> can be taken as the time average to eliminate
the sign and later take <R2>  as the average distance <R> without the effect of the sign.



<R2>  =  <R.R>  =  <bi2>  +  2 <bi.bj>∑
i<j

n
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n
(3.2)

where n is the number of bonds.  Since,

<bi2> =bi.bi.cos θij= bi2 (3.3)

where θij is the angle between two vectors.

A.  No restriction in bond angle

In this case, the time average bond angle, <cos θij>, is 0,

<bi.bj>  =  b2<cos θij>  =  0 (3.4)

Inserting equations (3.3) and (3.4) into equation (3.2) yields,

<R2>  =  nb2 (3.5)

Thus, the end-to-end distance is,

R  =   <R2>   =  b n (3.6)

B.  Fixed bond angle

In this model, the rotation around the bond is unristricted but the rotation must be achieved with
a fixed bond angle.
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The projected length of bi+1 on the direction of bi is b cos(π-θ).  Therefore,

<bi.bi+1>  = b2<cos(π-θ)>  =  -b2cos θ (3.7)

Then, the next pair, <bi.bi+2> will be,

<bi.bi+2>  = <bi.bi+1> cos(π-θ)  =  b2cos2 (π-θ) (3.8)

---------------------------------------------------------------
Similarly,

<bi.bi+k>  =b2 cosk (π-θ) (3.9)

We now consider the i th bond as reference for the polymer with the total number of bond n.  If
the bond beyond the i th is recounted as 1,2,3....k, the total number of bonds until i th bond is (n-
k).  Hence,
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=  b2ns - sn
1 - s  - b2s

(1-s)2
 {1-nsn-1 + (n+1)sn} (3.10)

where s = cos(π-θ)

Therefore,

<R2>  =  <bi2>  +  2 <bi.bj>∑
i<j

n
∑
i=1

n-1
∑
i=1

n

=  nb2  +  2[b2ns - sn
1 - s  - b2s

(1-s)2
 {1-nsn-1 + (n+1)sn}]

=  nb2 1+s
1-s  - 2s(1+sn)

n(1-s)2
(3.11)

Since 2s(1+s
n)

n(1-s)2
 ≈  0  for very large n,

<R2>  ≈  nb21 + cos(π-θ)
1 - cos(π-θ)

  =  nb2 1 - cosθ
1 + cosθ

(3.12)

For the C-C bond, the tetrahedral bond angle = 109o28', and, therefore, cos θ= -1/3.
Accordingly,

R  =   <R2>    =  nb2
1+1

3
1 - 13

  =  2nb2   =  2  (b n) (3.13)

Thus, the end-to-end distance for the restricted bond angle is 2  times larger than unrestricted
bond angle case.

C. Barrier for Internal Rotation

If a more accurate calculation is desired, the restriction due to the angle of rotation must be
taken into account.  After consideration of the energy barrier, ΔE, for internal rotation, the
following modified equation is obtained.

<R2>  =  nb2 1-cos θ
1+cos θ

.
2 + exp(-ΔE

kT )

3exp(-ΔE
kT )

(3.14)

3.1.2. Radius of Gyration



The end-to-end distance is difficult to measure.  Instead, the radius of gyration, S, is often
used since this quantity can be measured by a light scattering technique.  The mean-square value
of the radius of gyration can be related to the mean-square value of the end-to-end distance by:

<S2>  =  16 <R2> (3.15)

The radius of gyration is the average distance from the center of the gravity to the chain segment.
The radius of gyration of a polymer in a poor solvent is smaller than in a good solvent.  The
radius of gyrations for the same polymer with and without branching are different even for the
same molecular weight.  The g-factor is defined as follows to evaluate the degree of branching.

g  =  <S2>(branched polymer)
<S2>(linear polymer)

  (3.16)

3.2. Solution Properties

3.2.1. Viscosity

Polymer molecules in a dilute solution exist as ball like with the diameter determined by the
radius of gyration.  The radius of gyration depends on the interaction of the polymer molecule
with the solvent.  When the concentration of the polymer increases, the number of balls increases
until they start interacting each other.  This structure is seen in a semidilute concentration.  In a
concentrated solution, the polymer molecules no longer exist as separate balls but interact each
other.  In a sense a polymer chain is a solvent of another chain.  As a polymer chain is a good
solvent of itself, the polymer chains are much more stretched and sometimes the chains form
molecular entanglement if the molecular weight is above a certain value.  This special molecular
weight is called the entanglement molecular weight.  For atactic polystyrene, the entanglement
molecular weight is around 37,000.  A schematic diagram of the polymer molecules in solution
is shown below.

  

    Dilute solution Semi-dilute solution Concentrated solution

When solvent molecules move through these polymer balls, the solvent receives resistance.
The difficulty to flow is expressed by a quantity called viscosity, η.  The higher the viscosity, the
more difficult to move around.  Since the viscosity of a polymer solution is a function of the
polymer in the solution, the solution viscosity, η, can be expressed in terms of the viscosity of
the solvent, ηo, and the concentration of the polymer molecules, C.



η  =  ηο(1 + aC + bC2 + .......) (3.17)

The coefficient a relates to the properties of the individual polymer chain and the coefficient b
relates to the polymer-solvent interaction.  In order to obtain the quantity a, the above equation is
extrapolated to C=0.  Thus, the higher terms can be ignored.

lim η - ηo
ηoC   =  a (3.18)

This quantity a is called intrinsic viscosity, [η].  The ratio between the solution and solvent
viscosities is called relative viscosity, ηr=η/ηο.

According to Eistein, the viscosity of a very dilute solution with spheres can be expressed as
follows.

η  =  ηo (1 + 52φ) (3.19)

where φ is the packing fraction.

In general, the intrinsic viscosity of a polymer is expressed by the following equation.

[η] = KMa (3.20)

where 0.5<a<0.8.  This equation is called Mark-Houwink-Sakurada equation.

3.2.2. Thermodynamics of Polymer Solution

3.2.2.1. Statistical Theory (Flory-Huggins Theory)

Phase equilibrium, osmotic pressure, vapor pressure and other thermodynamic properties can
be studied by obtaining thermodynamic function of the polymer solution.  Gibbs free energy
provide extra energy that can be utilized and thus is an appropriate function to evaluate the
energy obtained by mixing a polymer into a solvent.  Those thermodynamic properties of
interest are usually the consequence of mixing the polymer into the solvent, the change before
and after the mixing should be evaluated.  Thus, all thermodynamic properties below indicate
those of mixture.

G  = H - TS = U + PV - TS (3.21)

where G is Gibbs free energy, H enthalpy, T temperature, S entropy, U internal energy, and V
volume.  Flory and Huggins independently calculated ΔS from a lattice model.  



The lattice model.  The open circle denotes solvent molecule and the closed circle is
the chemical repeat unit of a polymer chain.

Following are their assumptions.

i. A polymer solution can be regarded as chemical repeat units of the polymer chain
occupying each lattice unit.

ii. The lattice unit has equal size and each lattice unit can be occupied either by a solvent
molecule or the chemical repeat unit.

iii. The number of the neiboring chemical repeat units is called valence number.

iv. The number of placement of N2 polymer chain in N1 lattice units, W(N1, N2), provides
entropy of mixing ΔS using the Bolzmann equation shown below.

ΔS  =  k log W(N1, N2) (3.22)

After lengthy calculation, the entropy of mixing can be expressed as:

ΔS  =  -R (φ1 logφ1  +  φ2
m2

 logφ2) (3.23)

where R is the gas constant, φ the volume fraction, m the degree of polymerization, and
suffix 1 and 2 express the solvent and polymer, respectively.  If the second polymer is
regarded as the solvent of the first polymer in place of a small molecular weight
solvent, the equation correspond to polymer blend.  Thus, the entropy of mixing of a
blend is:



ΔS  =  -R ( φ1
m1

 logφ1  +  φ2
m2

 logφ2) (3.24)

If the solvent/solvent interaction energy is defined as ε11, solvent/chemical repeat unit ε12,
and chemical repeat unit/chemical repeat unit ε22, the enthalpy of mixing H can be expressed as
follows:

ΔH  =  Q12 Δε12 (3.25)

where Q12 is the number of contact between the solvent molecule and the chemical repeat
units and Δε12 = 0.5 (ε11 + ε22) - ε12.

Interaction parameter, χ12, is defined as follows:

χ12  =  zΔε12
kT (3.26)

where z is the valence number.  Accordingly, the Gibbs free energy of mixing, ΔG, is
expressed as follows using the interaction parameter:

ΔG  =  RT (φ1 logφ1  +  φ2
m2

 logφ2  +  χ12φ1φ2) (3.27)

Again, for polymer blend

ΔG  =  RT ( φ1
m1

 logφ1  +  φ2
m2

 logφ2  +  χ12φ1φ2) (3.28)

Ordinarily, m is replaced by the number average molecular weight, Mn.

The advantages of Flory-Huggins theory is that he equation is quite simple.  Also, m=1
corresponds to small molecular weight compound, and m1 and m2 can be used to describe
polymer blends.  However, this theory does have shorcomings as well.  By their assumption that
each lattice unit is occupied by either solvent molecule or a chemical repeat unit, the volume of
mixing, ΔV, is zero, and the fixed lattice size does not allow to evaluate the thermal expantion.  

3.2.2.2. Colligative Properties

A. Vapor Pressure

Vapor pressure lowering can be used to measure molecular weight of polymers.  Under ideal
solution assumption, the activity coefficient, γ, can be ignored.  Thus, activity of the solution, a1,
is,

a1  =  P1γ1

P1
oγ1

o   =  P1
P1

o (3.29)



Also under the ideal solution assumption, a1 for the gas which is in equilibrium with the solution
also holds for the solution, so,

a1  =  N1

where suffices 1 and 2 indicate solvent and solute, respectively, and N mole fraction.

P1
P1

o   =  N1  =  1 - N2 (3.30)

For N2 << 1 (very dilute solution),

ln P1
P1

o   =  ln (1 - N2) =  - N2 - 12N2
2 - 13N2

3....   (this is an exact equation) (3.31)

while,

N2  =  n2
n1 + n2

(3.32)

where n is the number of mole of solvent or solute.  If we have c grams of solute and w1 grams
of solvent in 1 cc of solution, then,

n1  =  w1
M1

and    n2  =  c
M2

Therefore,

n2
n1

  =  c
w1

 (M1
M2

) (3.33)

Also,  v1  +  v2  =  1, where v1 and v2 are the volume of solvent and solute in 1 cc of solution,
respectively.

v1  +  v2  =  w1
ρ1

  +  c
ρ2

  =  1 (3.34)

where ρ is density.  Rearranging the above equation yields,

w1  =  ρ1 (1 - c
ρ2

) (3.35)

Thus,

n2
n1

  =  c
w1

(M1
M2

)  =  c
ρ1(1 - c

ρ2
)
(M1
M2

)

    =  c
(1 - c

ρ1
)
 (M1
ρ1

)( 1
M2

)        Here,  M1
ρ1

  =  V1
o



    =  cV1
o

M2
1

1  -  c
ρ2

    =  cV1
o

M2
1  +  c

ρ2
(3.36)

because,

1
1 - c

ρ2

  =  1 + 
c
ρ2

1 - c
ρ2

  =  1 +  c
ρ2

   Here,    1 - c
ρ2

 ≈  1 for c<< ρ2 (3.37)

N2  ≈  n2
n1

  =  cV1
o

M2
 (1 + c

ρ2
)     since, N2  =  n2

n1 + n1
  ≈  n2

n1
 for n2 << 1 (3.38)

ln P1
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o   =  ln (1 - N2) =  - N2 - 12N2
2 - 13N2

3....
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o

M2
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ρ2
)   -  12

cV1
o

M2
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)

2
  -  13

cV1
o

M2
(1 + c

ρ2
)

3
  -  ......

     =  -  V1
o

M2
c  -  V1

o

M2ρ2
c2  -  12

V1
o

M2

2
c2  -  .... c3.... c4 (3.39)

Hence,

lnP1
P1

o

c -  =  - V1
o

M2
  -  V1

o

M2ρ2
 + V1

o 2

2M2
2

c  -  .....   (3.40)
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1
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c
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Since  lnP1
P1o

 < 0 for P1
P1o

 < 1, - V1
o

M2
 > 0

From the intercept, the molecular weight of the polymer can be calculated.   

Colligative properties are proportional to the number of particles while the number of
polymer molecules of high molecular weight polymers at the same volume content is very low.
Thus, the colligative property measurement is insensitive to high molecular weight polymers.

B. Osmotic Pressure
Osmotic pressure is the pressure needed to equalize the pressure on a semipermeable

membrane as a result of the increased Gibbs free energy by mixing polymer with a solvent.  

Π

Solution Solvent

Semipermeable membrane

The factors which determine the equilibrium state are:

i. Various porosities of membranes.
ii. The area of the membrane.
iii. The size distribution of capillaries.
iv. The viscosity of the solvent.
v. The distance from the equilibrium.

The advantages of osmotic pressure measurement are that the measurement is very simple and
the device is inexpensive.  On the other hand, disadvantages of the method are that it takes a long
time to approach equilibrium, solvent dilute the solution, and true semipermeable membrane is
rarely available.

The Gibbs free energy of mixing, ΔG, can be expressed as the difference between the free
energy of the solution, G1, and that of the solvent, G1o.

ΔG1  =  G1 - G1o (3.41)

From the thermodynamic law,



∂G1
∂P T

  =  V (3.42)

dG1  =  V1dP (3.43)

If the free energy increase from G1 to G1' requires the pressure to be increased from Po to P to
stop permeation, then,

dG1
G1

G1
'

  =  V1dP
Po

P

(3.44)

G1
'  - G1  =  V1(P - Po)  =  V1Π (3.45)

where Π is the osmotic pressure.

G1
'    =  G1

o  because the G of the solvent is G1o at no permeation.

G1
'  - G1  =  G1

o - G1  =  V1Π (3.46)

From Eq. (3.41),

ΔG1  =   G1 - G1
o  =  -V1Π (3.47)

The Gibbs free energy is also related to the activation energy:

ΔG1  =   RT ln a1  =  RT ln N1  =  -V1Π (3.48)

For very dilute solution,

ΔG1  =    -V1Π  =  -V1
oΠ

Therefore,

Π  =  - RT
V1

o  ln N1

    =  - RT
V1

o  ln (1 - N2)

    =  - RT
V1

o  (-N2 - 12N2
2 - 13N2

3 - ....)      from eq. (3.31)

    =   RT
V1

o  (N2 + 12N2
2 + 13N2

3 + ....) (3.49)

Substituting eq. (3.36) into eq. (3.49) yields,



Π
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 + RT( 1

M2ρ2
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o

2M2
2
)c + ..... (3.50)
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